| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elioore | ⊢ ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  →  𝐴  ∈  ℝ ) | 
						
							| 2 | 1 | recoscld | ⊢ ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  →  ( cos ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 3 |  | 1red | ⊢ ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  →  1  ∈  ℝ ) | 
						
							| 4 |  | cosbnd | ⊢ ( 𝐴  ∈  ℝ  →  ( - 1  ≤  ( cos ‘ 𝐴 )  ∧  ( cos ‘ 𝐴 )  ≤  1 ) ) | 
						
							| 5 | 4 | simprd | ⊢ ( 𝐴  ∈  ℝ  →  ( cos ‘ 𝐴 )  ≤  1 ) | 
						
							| 6 | 1 5 | syl | ⊢ ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  →  ( cos ‘ 𝐴 )  ≤  1 ) | 
						
							| 7 |  | 0zd | ⊢ ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  →  0  ∈  ℤ ) | 
						
							| 8 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 9 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 10 | 8 9 | remulcli | ⊢ ( 2  ·  π )  ∈  ℝ | 
						
							| 11 | 10 | a1i | ⊢ ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  →  ( 2  ·  π )  ∈  ℝ ) | 
						
							| 12 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 13 | 10 | rexri | ⊢ ( 2  ·  π )  ∈  ℝ* | 
						
							| 14 |  | elioo2 | ⊢ ( ( 0  ∈  ℝ*  ∧  ( 2  ·  π )  ∈  ℝ* )  →  ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  <  ( 2  ·  π ) ) ) ) | 
						
							| 15 | 12 13 14 | mp2an | ⊢ ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  <  ( 2  ·  π ) ) ) | 
						
							| 16 | 15 | simp2bi | ⊢ ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  →  0  <  𝐴 ) | 
						
							| 17 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 18 |  | pirp | ⊢ π  ∈  ℝ+ | 
						
							| 19 |  | rpmulcl | ⊢ ( ( 2  ∈  ℝ+  ∧  π  ∈  ℝ+ )  →  ( 2  ·  π )  ∈  ℝ+ ) | 
						
							| 20 | 17 18 19 | mp2an | ⊢ ( 2  ·  π )  ∈  ℝ+ | 
						
							| 21 |  | rpgt0 | ⊢ ( ( 2  ·  π )  ∈  ℝ+  →  0  <  ( 2  ·  π ) ) | 
						
							| 22 | 20 21 | mp1i | ⊢ ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  →  0  <  ( 2  ·  π ) ) | 
						
							| 23 | 1 11 16 22 | divgt0d | ⊢ ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  →  0  <  ( 𝐴  /  ( 2  ·  π ) ) ) | 
						
							| 24 | 20 | a1i | ⊢ ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  →  ( 2  ·  π )  ∈  ℝ+ ) | 
						
							| 25 | 15 | simp3bi | ⊢ ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  →  𝐴  <  ( 2  ·  π ) ) | 
						
							| 26 | 1 11 24 25 | ltdiv1dd | ⊢ ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  →  ( 𝐴  /  ( 2  ·  π ) )  <  ( ( 2  ·  π )  /  ( 2  ·  π ) ) ) | 
						
							| 27 | 11 | recnd | ⊢ ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  →  ( 2  ·  π )  ∈  ℂ ) | 
						
							| 28 | 22 | gt0ne0d | ⊢ ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  →  ( 2  ·  π )  ≠  0 ) | 
						
							| 29 | 27 28 | dividd | ⊢ ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  →  ( ( 2  ·  π )  /  ( 2  ·  π ) )  =  1 ) | 
						
							| 30 | 26 29 | breqtrd | ⊢ ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  →  ( 𝐴  /  ( 2  ·  π ) )  <  1 ) | 
						
							| 31 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 32 | 30 31 | breqtrrdi | ⊢ ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  →  ( 𝐴  /  ( 2  ·  π ) )  <  ( 0  +  1 ) ) | 
						
							| 33 |  | btwnnz | ⊢ ( ( 0  ∈  ℤ  ∧  0  <  ( 𝐴  /  ( 2  ·  π ) )  ∧  ( 𝐴  /  ( 2  ·  π ) )  <  ( 0  +  1 ) )  →  ¬  ( 𝐴  /  ( 2  ·  π ) )  ∈  ℤ ) | 
						
							| 34 | 7 23 32 33 | syl3anc | ⊢ ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  →  ¬  ( 𝐴  /  ( 2  ·  π ) )  ∈  ℤ ) | 
						
							| 35 | 1 | recnd | ⊢ ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  →  𝐴  ∈  ℂ ) | 
						
							| 36 |  | coseq1 | ⊢ ( 𝐴  ∈  ℂ  →  ( ( cos ‘ 𝐴 )  =  1  ↔  ( 𝐴  /  ( 2  ·  π ) )  ∈  ℤ ) ) | 
						
							| 37 | 35 36 | syl | ⊢ ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  →  ( ( cos ‘ 𝐴 )  =  1  ↔  ( 𝐴  /  ( 2  ·  π ) )  ∈  ℤ ) ) | 
						
							| 38 | 34 37 | mtbird | ⊢ ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  →  ¬  ( cos ‘ 𝐴 )  =  1 ) | 
						
							| 39 | 38 | neqned | ⊢ ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  →  ( cos ‘ 𝐴 )  ≠  1 ) | 
						
							| 40 | 39 | necomd | ⊢ ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  →  1  ≠  ( cos ‘ 𝐴 ) ) | 
						
							| 41 | 2 3 6 40 | leneltd | ⊢ ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  →  ( cos ‘ 𝐴 )  <  1 ) |