| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ancom |
⊢ ( ( ¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) ↔ ( ¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵 ) ) |
| 2 |
|
cosord |
⊢ ( ( 𝐵 ∈ ( 0 [,] π ) ∧ 𝐴 ∈ ( 0 [,] π ) ) → ( 𝐵 < 𝐴 ↔ ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ) ) |
| 3 |
2
|
ancoms |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( 𝐵 < 𝐴 ↔ ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ) ) |
| 4 |
3
|
notbid |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( ¬ 𝐵 < 𝐴 ↔ ¬ ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ) ) |
| 5 |
|
cosord |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( 𝐴 < 𝐵 ↔ ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ) ) |
| 6 |
5
|
notbid |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( ¬ 𝐴 < 𝐵 ↔ ¬ ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ) ) |
| 7 |
4 6
|
anbi12d |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( ( ¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵 ) ↔ ( ¬ ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ∧ ¬ ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ) ) ) |
| 8 |
1 7
|
bitrid |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( ( ¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) ↔ ( ¬ ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ∧ ¬ ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ) ) ) |
| 9 |
|
0re |
⊢ 0 ∈ ℝ |
| 10 |
|
pire |
⊢ π ∈ ℝ |
| 11 |
9 10
|
elicc2i |
⊢ ( 𝐴 ∈ ( 0 [,] π ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ π ) ) |
| 12 |
11
|
simp1bi |
⊢ ( 𝐴 ∈ ( 0 [,] π ) → 𝐴 ∈ ℝ ) |
| 13 |
9 10
|
elicc2i |
⊢ ( 𝐵 ∈ ( 0 [,] π ) ↔ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ π ) ) |
| 14 |
13
|
simp1bi |
⊢ ( 𝐵 ∈ ( 0 [,] π ) → 𝐵 ∈ ℝ ) |
| 15 |
|
lttri3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 = 𝐵 ↔ ( ¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) ) ) |
| 16 |
12 14 15
|
syl2an |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( 𝐴 = 𝐵 ↔ ( ¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) ) ) |
| 17 |
|
recoscl |
⊢ ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) ∈ ℝ ) |
| 18 |
|
recoscl |
⊢ ( 𝐵 ∈ ℝ → ( cos ‘ 𝐵 ) ∈ ℝ ) |
| 19 |
|
lttri3 |
⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℝ ∧ ( cos ‘ 𝐵 ) ∈ ℝ ) → ( ( cos ‘ 𝐴 ) = ( cos ‘ 𝐵 ) ↔ ( ¬ ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ∧ ¬ ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ) ) ) |
| 20 |
17 18 19
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( cos ‘ 𝐴 ) = ( cos ‘ 𝐵 ) ↔ ( ¬ ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ∧ ¬ ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ) ) ) |
| 21 |
12 14 20
|
syl2an |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( ( cos ‘ 𝐴 ) = ( cos ‘ 𝐵 ) ↔ ( ¬ ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ∧ ¬ ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ) ) ) |
| 22 |
8 16 21
|
3bitr4d |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( 𝐴 = 𝐵 ↔ ( cos ‘ 𝐴 ) = ( cos ‘ 𝐵 ) ) ) |