Step |
Hyp |
Ref |
Expression |
1 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
2 |
1
|
oveq1i |
⊢ ( ( 1 ↑ 2 ) / 3 ) = ( 1 / 3 ) |
3 |
2
|
oveq2i |
⊢ ( 2 · ( ( 1 ↑ 2 ) / 3 ) ) = ( 2 · ( 1 / 3 ) ) |
4 |
|
2cn |
⊢ 2 ∈ ℂ |
5 |
|
3cn |
⊢ 3 ∈ ℂ |
6 |
|
3ne0 |
⊢ 3 ≠ 0 |
7 |
4 5 6
|
divreci |
⊢ ( 2 / 3 ) = ( 2 · ( 1 / 3 ) ) |
8 |
3 7
|
eqtr4i |
⊢ ( 2 · ( ( 1 ↑ 2 ) / 3 ) ) = ( 2 / 3 ) |
9 |
8
|
oveq2i |
⊢ ( 1 − ( 2 · ( ( 1 ↑ 2 ) / 3 ) ) ) = ( 1 − ( 2 / 3 ) ) |
10 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
11 |
4 5 6
|
divcli |
⊢ ( 2 / 3 ) ∈ ℂ |
12 |
5 6
|
reccli |
⊢ ( 1 / 3 ) ∈ ℂ |
13 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
14 |
13
|
oveq1i |
⊢ ( 3 / 3 ) = ( ( 2 + 1 ) / 3 ) |
15 |
5 6
|
dividi |
⊢ ( 3 / 3 ) = 1 |
16 |
4 10 5 6
|
divdiri |
⊢ ( ( 2 + 1 ) / 3 ) = ( ( 2 / 3 ) + ( 1 / 3 ) ) |
17 |
14 15 16
|
3eqtr3ri |
⊢ ( ( 2 / 3 ) + ( 1 / 3 ) ) = 1 |
18 |
10 11 12 17
|
subaddrii |
⊢ ( 1 − ( 2 / 3 ) ) = ( 1 / 3 ) |
19 |
9 18
|
eqtri |
⊢ ( 1 − ( 2 · ( ( 1 ↑ 2 ) / 3 ) ) ) = ( 1 / 3 ) |
20 |
|
1re |
⊢ 1 ∈ ℝ |
21 |
|
0lt1 |
⊢ 0 < 1 |
22 |
|
1le1 |
⊢ 1 ≤ 1 |
23 |
|
0xr |
⊢ 0 ∈ ℝ* |
24 |
|
elioc2 |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 1 ∈ ( 0 (,] 1 ) ↔ ( 1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1 ) ) ) |
25 |
23 20 24
|
mp2an |
⊢ ( 1 ∈ ( 0 (,] 1 ) ↔ ( 1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1 ) ) |
26 |
|
cos01bnd |
⊢ ( 1 ∈ ( 0 (,] 1 ) → ( ( 1 − ( 2 · ( ( 1 ↑ 2 ) / 3 ) ) ) < ( cos ‘ 1 ) ∧ ( cos ‘ 1 ) < ( 1 − ( ( 1 ↑ 2 ) / 3 ) ) ) ) |
27 |
25 26
|
sylbir |
⊢ ( ( 1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1 ) → ( ( 1 − ( 2 · ( ( 1 ↑ 2 ) / 3 ) ) ) < ( cos ‘ 1 ) ∧ ( cos ‘ 1 ) < ( 1 − ( ( 1 ↑ 2 ) / 3 ) ) ) ) |
28 |
20 21 22 27
|
mp3an |
⊢ ( ( 1 − ( 2 · ( ( 1 ↑ 2 ) / 3 ) ) ) < ( cos ‘ 1 ) ∧ ( cos ‘ 1 ) < ( 1 − ( ( 1 ↑ 2 ) / 3 ) ) ) |
29 |
28
|
simpli |
⊢ ( 1 − ( 2 · ( ( 1 ↑ 2 ) / 3 ) ) ) < ( cos ‘ 1 ) |
30 |
19 29
|
eqbrtrri |
⊢ ( 1 / 3 ) < ( cos ‘ 1 ) |
31 |
28
|
simpri |
⊢ ( cos ‘ 1 ) < ( 1 − ( ( 1 ↑ 2 ) / 3 ) ) |
32 |
2
|
oveq2i |
⊢ ( 1 − ( ( 1 ↑ 2 ) / 3 ) ) = ( 1 − ( 1 / 3 ) ) |
33 |
10 12 11
|
subadd2i |
⊢ ( ( 1 − ( 1 / 3 ) ) = ( 2 / 3 ) ↔ ( ( 2 / 3 ) + ( 1 / 3 ) ) = 1 ) |
34 |
17 33
|
mpbir |
⊢ ( 1 − ( 1 / 3 ) ) = ( 2 / 3 ) |
35 |
32 34
|
eqtri |
⊢ ( 1 − ( ( 1 ↑ 2 ) / 3 ) ) = ( 2 / 3 ) |
36 |
31 35
|
breqtri |
⊢ ( cos ‘ 1 ) < ( 2 / 3 ) |
37 |
30 36
|
pm3.2i |
⊢ ( ( 1 / 3 ) < ( cos ‘ 1 ) ∧ ( cos ‘ 1 ) < ( 2 / 3 ) ) |