| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 7cn | ⊢ 7  ∈  ℂ | 
						
							| 2 |  | 9cn | ⊢ 9  ∈  ℂ | 
						
							| 3 |  | 9re | ⊢ 9  ∈  ℝ | 
						
							| 4 |  | 9pos | ⊢ 0  <  9 | 
						
							| 5 | 3 4 | gt0ne0ii | ⊢ 9  ≠  0 | 
						
							| 6 |  | divneg | ⊢ ( ( 7  ∈  ℂ  ∧  9  ∈  ℂ  ∧  9  ≠  0 )  →  - ( 7  /  9 )  =  ( - 7  /  9 ) ) | 
						
							| 7 | 1 2 5 6 | mp3an | ⊢ - ( 7  /  9 )  =  ( - 7  /  9 ) | 
						
							| 8 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 9 | 2 5 | pm3.2i | ⊢ ( 9  ∈  ℂ  ∧  9  ≠  0 ) | 
						
							| 10 |  | divsubdir | ⊢ ( ( 2  ∈  ℂ  ∧  9  ∈  ℂ  ∧  ( 9  ∈  ℂ  ∧  9  ≠  0 ) )  →  ( ( 2  −  9 )  /  9 )  =  ( ( 2  /  9 )  −  ( 9  /  9 ) ) ) | 
						
							| 11 | 8 2 9 10 | mp3an | ⊢ ( ( 2  −  9 )  /  9 )  =  ( ( 2  /  9 )  −  ( 9  /  9 ) ) | 
						
							| 12 | 2 8 | negsubdi2i | ⊢ - ( 9  −  2 )  =  ( 2  −  9 ) | 
						
							| 13 |  | 7p2e9 | ⊢ ( 7  +  2 )  =  9 | 
						
							| 14 | 2 8 1 | subadd2i | ⊢ ( ( 9  −  2 )  =  7  ↔  ( 7  +  2 )  =  9 ) | 
						
							| 15 | 13 14 | mpbir | ⊢ ( 9  −  2 )  =  7 | 
						
							| 16 | 15 | negeqi | ⊢ - ( 9  −  2 )  =  - 7 | 
						
							| 17 | 12 16 | eqtr3i | ⊢ ( 2  −  9 )  =  - 7 | 
						
							| 18 | 17 | oveq1i | ⊢ ( ( 2  −  9 )  /  9 )  =  ( - 7  /  9 ) | 
						
							| 19 | 11 18 | eqtr3i | ⊢ ( ( 2  /  9 )  −  ( 9  /  9 ) )  =  ( - 7  /  9 ) | 
						
							| 20 | 2 5 | dividi | ⊢ ( 9  /  9 )  =  1 | 
						
							| 21 | 20 | oveq2i | ⊢ ( ( 2  /  9 )  −  ( 9  /  9 ) )  =  ( ( 2  /  9 )  −  1 ) | 
						
							| 22 | 7 19 21 | 3eqtr2ri | ⊢ ( ( 2  /  9 )  −  1 )  =  - ( 7  /  9 ) | 
						
							| 23 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 24 | 8 23 2 5 | divassi | ⊢ ( ( 2  ·  1 )  /  9 )  =  ( 2  ·  ( 1  /  9 ) ) | 
						
							| 25 |  | 2t1e2 | ⊢ ( 2  ·  1 )  =  2 | 
						
							| 26 | 25 | oveq1i | ⊢ ( ( 2  ·  1 )  /  9 )  =  ( 2  /  9 ) | 
						
							| 27 | 24 26 | eqtr3i | ⊢ ( 2  ·  ( 1  /  9 ) )  =  ( 2  /  9 ) | 
						
							| 28 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 29 |  | 3ne0 | ⊢ 3  ≠  0 | 
						
							| 30 | 23 28 29 | sqdivi | ⊢ ( ( 1  /  3 ) ↑ 2 )  =  ( ( 1 ↑ 2 )  /  ( 3 ↑ 2 ) ) | 
						
							| 31 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 32 |  | sq3 | ⊢ ( 3 ↑ 2 )  =  9 | 
						
							| 33 | 31 32 | oveq12i | ⊢ ( ( 1 ↑ 2 )  /  ( 3 ↑ 2 ) )  =  ( 1  /  9 ) | 
						
							| 34 | 30 33 | eqtri | ⊢ ( ( 1  /  3 ) ↑ 2 )  =  ( 1  /  9 ) | 
						
							| 35 |  | cos1bnd | ⊢ ( ( 1  /  3 )  <  ( cos ‘ 1 )  ∧  ( cos ‘ 1 )  <  ( 2  /  3 ) ) | 
						
							| 36 | 35 | simpli | ⊢ ( 1  /  3 )  <  ( cos ‘ 1 ) | 
						
							| 37 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 38 |  | 3pos | ⊢ 0  <  3 | 
						
							| 39 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 40 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 41 | 39 40 | divge0i | ⊢ ( ( 0  ≤  1  ∧  0  <  3 )  →  0  ≤  ( 1  /  3 ) ) | 
						
							| 42 | 37 38 41 | mp2an | ⊢ 0  ≤  ( 1  /  3 ) | 
						
							| 43 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 44 |  | recoscl | ⊢ ( 1  ∈  ℝ  →  ( cos ‘ 1 )  ∈  ℝ ) | 
						
							| 45 | 39 44 | ax-mp | ⊢ ( cos ‘ 1 )  ∈  ℝ | 
						
							| 46 | 40 29 | rereccli | ⊢ ( 1  /  3 )  ∈  ℝ | 
						
							| 47 | 43 46 45 | lelttri | ⊢ ( ( 0  ≤  ( 1  /  3 )  ∧  ( 1  /  3 )  <  ( cos ‘ 1 ) )  →  0  <  ( cos ‘ 1 ) ) | 
						
							| 48 | 42 36 47 | mp2an | ⊢ 0  <  ( cos ‘ 1 ) | 
						
							| 49 | 43 45 48 | ltleii | ⊢ 0  ≤  ( cos ‘ 1 ) | 
						
							| 50 | 46 45 | lt2sqi | ⊢ ( ( 0  ≤  ( 1  /  3 )  ∧  0  ≤  ( cos ‘ 1 ) )  →  ( ( 1  /  3 )  <  ( cos ‘ 1 )  ↔  ( ( 1  /  3 ) ↑ 2 )  <  ( ( cos ‘ 1 ) ↑ 2 ) ) ) | 
						
							| 51 | 42 49 50 | mp2an | ⊢ ( ( 1  /  3 )  <  ( cos ‘ 1 )  ↔  ( ( 1  /  3 ) ↑ 2 )  <  ( ( cos ‘ 1 ) ↑ 2 ) ) | 
						
							| 52 | 36 51 | mpbi | ⊢ ( ( 1  /  3 ) ↑ 2 )  <  ( ( cos ‘ 1 ) ↑ 2 ) | 
						
							| 53 | 34 52 | eqbrtrri | ⊢ ( 1  /  9 )  <  ( ( cos ‘ 1 ) ↑ 2 ) | 
						
							| 54 |  | 2pos | ⊢ 0  <  2 | 
						
							| 55 | 3 5 | rereccli | ⊢ ( 1  /  9 )  ∈  ℝ | 
						
							| 56 | 45 | resqcli | ⊢ ( ( cos ‘ 1 ) ↑ 2 )  ∈  ℝ | 
						
							| 57 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 58 | 55 56 57 | ltmul2i | ⊢ ( 0  <  2  →  ( ( 1  /  9 )  <  ( ( cos ‘ 1 ) ↑ 2 )  ↔  ( 2  ·  ( 1  /  9 ) )  <  ( 2  ·  ( ( cos ‘ 1 ) ↑ 2 ) ) ) ) | 
						
							| 59 | 54 58 | ax-mp | ⊢ ( ( 1  /  9 )  <  ( ( cos ‘ 1 ) ↑ 2 )  ↔  ( 2  ·  ( 1  /  9 ) )  <  ( 2  ·  ( ( cos ‘ 1 ) ↑ 2 ) ) ) | 
						
							| 60 | 53 59 | mpbi | ⊢ ( 2  ·  ( 1  /  9 ) )  <  ( 2  ·  ( ( cos ‘ 1 ) ↑ 2 ) ) | 
						
							| 61 | 27 60 | eqbrtrri | ⊢ ( 2  /  9 )  <  ( 2  ·  ( ( cos ‘ 1 ) ↑ 2 ) ) | 
						
							| 62 | 57 3 5 | redivcli | ⊢ ( 2  /  9 )  ∈  ℝ | 
						
							| 63 | 57 56 | remulcli | ⊢ ( 2  ·  ( ( cos ‘ 1 ) ↑ 2 ) )  ∈  ℝ | 
						
							| 64 |  | ltsub1 | ⊢ ( ( ( 2  /  9 )  ∈  ℝ  ∧  ( 2  ·  ( ( cos ‘ 1 ) ↑ 2 ) )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( 2  /  9 )  <  ( 2  ·  ( ( cos ‘ 1 ) ↑ 2 ) )  ↔  ( ( 2  /  9 )  −  1 )  <  ( ( 2  ·  ( ( cos ‘ 1 ) ↑ 2 ) )  −  1 ) ) ) | 
						
							| 65 | 62 63 39 64 | mp3an | ⊢ ( ( 2  /  9 )  <  ( 2  ·  ( ( cos ‘ 1 ) ↑ 2 ) )  ↔  ( ( 2  /  9 )  −  1 )  <  ( ( 2  ·  ( ( cos ‘ 1 ) ↑ 2 ) )  −  1 ) ) | 
						
							| 66 | 61 65 | mpbi | ⊢ ( ( 2  /  9 )  −  1 )  <  ( ( 2  ·  ( ( cos ‘ 1 ) ↑ 2 ) )  −  1 ) | 
						
							| 67 | 22 66 | eqbrtrri | ⊢ - ( 7  /  9 )  <  ( ( 2  ·  ( ( cos ‘ 1 ) ↑ 2 ) )  −  1 ) | 
						
							| 68 | 25 | fveq2i | ⊢ ( cos ‘ ( 2  ·  1 ) )  =  ( cos ‘ 2 ) | 
						
							| 69 |  | cos2t | ⊢ ( 1  ∈  ℂ  →  ( cos ‘ ( 2  ·  1 ) )  =  ( ( 2  ·  ( ( cos ‘ 1 ) ↑ 2 ) )  −  1 ) ) | 
						
							| 70 | 23 69 | ax-mp | ⊢ ( cos ‘ ( 2  ·  1 ) )  =  ( ( 2  ·  ( ( cos ‘ 1 ) ↑ 2 ) )  −  1 ) | 
						
							| 71 | 68 70 | eqtr3i | ⊢ ( cos ‘ 2 )  =  ( ( 2  ·  ( ( cos ‘ 1 ) ↑ 2 ) )  −  1 ) | 
						
							| 72 | 67 71 | breqtrri | ⊢ - ( 7  /  9 )  <  ( cos ‘ 2 ) | 
						
							| 73 | 35 | simpri | ⊢ ( cos ‘ 1 )  <  ( 2  /  3 ) | 
						
							| 74 |  | 0le2 | ⊢ 0  ≤  2 | 
						
							| 75 | 57 40 | divge0i | ⊢ ( ( 0  ≤  2  ∧  0  <  3 )  →  0  ≤  ( 2  /  3 ) ) | 
						
							| 76 | 74 38 75 | mp2an | ⊢ 0  ≤  ( 2  /  3 ) | 
						
							| 77 | 57 40 29 | redivcli | ⊢ ( 2  /  3 )  ∈  ℝ | 
						
							| 78 | 45 77 | lt2sqi | ⊢ ( ( 0  ≤  ( cos ‘ 1 )  ∧  0  ≤  ( 2  /  3 ) )  →  ( ( cos ‘ 1 )  <  ( 2  /  3 )  ↔  ( ( cos ‘ 1 ) ↑ 2 )  <  ( ( 2  /  3 ) ↑ 2 ) ) ) | 
						
							| 79 | 49 76 78 | mp2an | ⊢ ( ( cos ‘ 1 )  <  ( 2  /  3 )  ↔  ( ( cos ‘ 1 ) ↑ 2 )  <  ( ( 2  /  3 ) ↑ 2 ) ) | 
						
							| 80 | 73 79 | mpbi | ⊢ ( ( cos ‘ 1 ) ↑ 2 )  <  ( ( 2  /  3 ) ↑ 2 ) | 
						
							| 81 | 8 28 29 | sqdivi | ⊢ ( ( 2  /  3 ) ↑ 2 )  =  ( ( 2 ↑ 2 )  /  ( 3 ↑ 2 ) ) | 
						
							| 82 |  | sq2 | ⊢ ( 2 ↑ 2 )  =  4 | 
						
							| 83 | 82 32 | oveq12i | ⊢ ( ( 2 ↑ 2 )  /  ( 3 ↑ 2 ) )  =  ( 4  /  9 ) | 
						
							| 84 | 81 83 | eqtri | ⊢ ( ( 2  /  3 ) ↑ 2 )  =  ( 4  /  9 ) | 
						
							| 85 | 80 84 | breqtri | ⊢ ( ( cos ‘ 1 ) ↑ 2 )  <  ( 4  /  9 ) | 
						
							| 86 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 87 | 86 3 5 | redivcli | ⊢ ( 4  /  9 )  ∈  ℝ | 
						
							| 88 | 56 87 57 | ltmul2i | ⊢ ( 0  <  2  →  ( ( ( cos ‘ 1 ) ↑ 2 )  <  ( 4  /  9 )  ↔  ( 2  ·  ( ( cos ‘ 1 ) ↑ 2 ) )  <  ( 2  ·  ( 4  /  9 ) ) ) ) | 
						
							| 89 | 54 88 | ax-mp | ⊢ ( ( ( cos ‘ 1 ) ↑ 2 )  <  ( 4  /  9 )  ↔  ( 2  ·  ( ( cos ‘ 1 ) ↑ 2 ) )  <  ( 2  ·  ( 4  /  9 ) ) ) | 
						
							| 90 | 85 89 | mpbi | ⊢ ( 2  ·  ( ( cos ‘ 1 ) ↑ 2 ) )  <  ( 2  ·  ( 4  /  9 ) ) | 
						
							| 91 |  | 4cn | ⊢ 4  ∈  ℂ | 
						
							| 92 | 8 91 2 5 | divassi | ⊢ ( ( 2  ·  4 )  /  9 )  =  ( 2  ·  ( 4  /  9 ) ) | 
						
							| 93 |  | 4t2e8 | ⊢ ( 4  ·  2 )  =  8 | 
						
							| 94 | 91 8 93 | mulcomli | ⊢ ( 2  ·  4 )  =  8 | 
						
							| 95 | 94 | oveq1i | ⊢ ( ( 2  ·  4 )  /  9 )  =  ( 8  /  9 ) | 
						
							| 96 | 92 95 | eqtr3i | ⊢ ( 2  ·  ( 4  /  9 ) )  =  ( 8  /  9 ) | 
						
							| 97 | 90 96 | breqtri | ⊢ ( 2  ·  ( ( cos ‘ 1 ) ↑ 2 ) )  <  ( 8  /  9 ) | 
						
							| 98 |  | 8re | ⊢ 8  ∈  ℝ | 
						
							| 99 | 98 3 5 | redivcli | ⊢ ( 8  /  9 )  ∈  ℝ | 
						
							| 100 |  | ltsub1 | ⊢ ( ( ( 2  ·  ( ( cos ‘ 1 ) ↑ 2 ) )  ∈  ℝ  ∧  ( 8  /  9 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( 2  ·  ( ( cos ‘ 1 ) ↑ 2 ) )  <  ( 8  /  9 )  ↔  ( ( 2  ·  ( ( cos ‘ 1 ) ↑ 2 ) )  −  1 )  <  ( ( 8  /  9 )  −  1 ) ) ) | 
						
							| 101 | 63 99 39 100 | mp3an | ⊢ ( ( 2  ·  ( ( cos ‘ 1 ) ↑ 2 ) )  <  ( 8  /  9 )  ↔  ( ( 2  ·  ( ( cos ‘ 1 ) ↑ 2 ) )  −  1 )  <  ( ( 8  /  9 )  −  1 ) ) | 
						
							| 102 | 97 101 | mpbi | ⊢ ( ( 2  ·  ( ( cos ‘ 1 ) ↑ 2 ) )  −  1 )  <  ( ( 8  /  9 )  −  1 ) | 
						
							| 103 | 20 | oveq2i | ⊢ ( ( 8  /  9 )  −  ( 9  /  9 ) )  =  ( ( 8  /  9 )  −  1 ) | 
						
							| 104 |  | divneg | ⊢ ( ( 1  ∈  ℂ  ∧  9  ∈  ℂ  ∧  9  ≠  0 )  →  - ( 1  /  9 )  =  ( - 1  /  9 ) ) | 
						
							| 105 | 23 2 5 104 | mp3an | ⊢ - ( 1  /  9 )  =  ( - 1  /  9 ) | 
						
							| 106 |  | 8cn | ⊢ 8  ∈  ℂ | 
						
							| 107 | 2 106 | negsubdi2i | ⊢ - ( 9  −  8 )  =  ( 8  −  9 ) | 
						
							| 108 |  | 8p1e9 | ⊢ ( 8  +  1 )  =  9 | 
						
							| 109 | 2 106 23 108 | subaddrii | ⊢ ( 9  −  8 )  =  1 | 
						
							| 110 | 109 | negeqi | ⊢ - ( 9  −  8 )  =  - 1 | 
						
							| 111 | 107 110 | eqtr3i | ⊢ ( 8  −  9 )  =  - 1 | 
						
							| 112 | 111 | oveq1i | ⊢ ( ( 8  −  9 )  /  9 )  =  ( - 1  /  9 ) | 
						
							| 113 |  | divsubdir | ⊢ ( ( 8  ∈  ℂ  ∧  9  ∈  ℂ  ∧  ( 9  ∈  ℂ  ∧  9  ≠  0 ) )  →  ( ( 8  −  9 )  /  9 )  =  ( ( 8  /  9 )  −  ( 9  /  9 ) ) ) | 
						
							| 114 | 106 2 9 113 | mp3an | ⊢ ( ( 8  −  9 )  /  9 )  =  ( ( 8  /  9 )  −  ( 9  /  9 ) ) | 
						
							| 115 | 105 112 114 | 3eqtr2ri | ⊢ ( ( 8  /  9 )  −  ( 9  /  9 ) )  =  - ( 1  /  9 ) | 
						
							| 116 | 103 115 | eqtr3i | ⊢ ( ( 8  /  9 )  −  1 )  =  - ( 1  /  9 ) | 
						
							| 117 | 102 116 | breqtri | ⊢ ( ( 2  ·  ( ( cos ‘ 1 ) ↑ 2 ) )  −  1 )  <  - ( 1  /  9 ) | 
						
							| 118 | 71 117 | eqbrtri | ⊢ ( cos ‘ 2 )  <  - ( 1  /  9 ) | 
						
							| 119 | 72 118 | pm3.2i | ⊢ ( - ( 7  /  9 )  <  ( cos ‘ 2 )  ∧  ( cos ‘ 2 )  <  - ( 1  /  9 ) ) |