Step |
Hyp |
Ref |
Expression |
1 |
|
7cn |
⊢ 7 ∈ ℂ |
2 |
|
9cn |
⊢ 9 ∈ ℂ |
3 |
|
9re |
⊢ 9 ∈ ℝ |
4 |
|
9pos |
⊢ 0 < 9 |
5 |
3 4
|
gt0ne0ii |
⊢ 9 ≠ 0 |
6 |
|
divneg |
⊢ ( ( 7 ∈ ℂ ∧ 9 ∈ ℂ ∧ 9 ≠ 0 ) → - ( 7 / 9 ) = ( - 7 / 9 ) ) |
7 |
1 2 5 6
|
mp3an |
⊢ - ( 7 / 9 ) = ( - 7 / 9 ) |
8 |
|
2cn |
⊢ 2 ∈ ℂ |
9 |
2 5
|
pm3.2i |
⊢ ( 9 ∈ ℂ ∧ 9 ≠ 0 ) |
10 |
|
divsubdir |
⊢ ( ( 2 ∈ ℂ ∧ 9 ∈ ℂ ∧ ( 9 ∈ ℂ ∧ 9 ≠ 0 ) ) → ( ( 2 − 9 ) / 9 ) = ( ( 2 / 9 ) − ( 9 / 9 ) ) ) |
11 |
8 2 9 10
|
mp3an |
⊢ ( ( 2 − 9 ) / 9 ) = ( ( 2 / 9 ) − ( 9 / 9 ) ) |
12 |
2 8
|
negsubdi2i |
⊢ - ( 9 − 2 ) = ( 2 − 9 ) |
13 |
|
7p2e9 |
⊢ ( 7 + 2 ) = 9 |
14 |
2 8 1
|
subadd2i |
⊢ ( ( 9 − 2 ) = 7 ↔ ( 7 + 2 ) = 9 ) |
15 |
13 14
|
mpbir |
⊢ ( 9 − 2 ) = 7 |
16 |
15
|
negeqi |
⊢ - ( 9 − 2 ) = - 7 |
17 |
12 16
|
eqtr3i |
⊢ ( 2 − 9 ) = - 7 |
18 |
17
|
oveq1i |
⊢ ( ( 2 − 9 ) / 9 ) = ( - 7 / 9 ) |
19 |
11 18
|
eqtr3i |
⊢ ( ( 2 / 9 ) − ( 9 / 9 ) ) = ( - 7 / 9 ) |
20 |
2 5
|
dividi |
⊢ ( 9 / 9 ) = 1 |
21 |
20
|
oveq2i |
⊢ ( ( 2 / 9 ) − ( 9 / 9 ) ) = ( ( 2 / 9 ) − 1 ) |
22 |
7 19 21
|
3eqtr2ri |
⊢ ( ( 2 / 9 ) − 1 ) = - ( 7 / 9 ) |
23 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
24 |
8 23 2 5
|
divassi |
⊢ ( ( 2 · 1 ) / 9 ) = ( 2 · ( 1 / 9 ) ) |
25 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
26 |
25
|
oveq1i |
⊢ ( ( 2 · 1 ) / 9 ) = ( 2 / 9 ) |
27 |
24 26
|
eqtr3i |
⊢ ( 2 · ( 1 / 9 ) ) = ( 2 / 9 ) |
28 |
|
3cn |
⊢ 3 ∈ ℂ |
29 |
|
3ne0 |
⊢ 3 ≠ 0 |
30 |
23 28 29
|
sqdivi |
⊢ ( ( 1 / 3 ) ↑ 2 ) = ( ( 1 ↑ 2 ) / ( 3 ↑ 2 ) ) |
31 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
32 |
|
sq3 |
⊢ ( 3 ↑ 2 ) = 9 |
33 |
31 32
|
oveq12i |
⊢ ( ( 1 ↑ 2 ) / ( 3 ↑ 2 ) ) = ( 1 / 9 ) |
34 |
30 33
|
eqtri |
⊢ ( ( 1 / 3 ) ↑ 2 ) = ( 1 / 9 ) |
35 |
|
cos1bnd |
⊢ ( ( 1 / 3 ) < ( cos ‘ 1 ) ∧ ( cos ‘ 1 ) < ( 2 / 3 ) ) |
36 |
35
|
simpli |
⊢ ( 1 / 3 ) < ( cos ‘ 1 ) |
37 |
|
0le1 |
⊢ 0 ≤ 1 |
38 |
|
3pos |
⊢ 0 < 3 |
39 |
|
1re |
⊢ 1 ∈ ℝ |
40 |
|
3re |
⊢ 3 ∈ ℝ |
41 |
39 40
|
divge0i |
⊢ ( ( 0 ≤ 1 ∧ 0 < 3 ) → 0 ≤ ( 1 / 3 ) ) |
42 |
37 38 41
|
mp2an |
⊢ 0 ≤ ( 1 / 3 ) |
43 |
|
0re |
⊢ 0 ∈ ℝ |
44 |
|
recoscl |
⊢ ( 1 ∈ ℝ → ( cos ‘ 1 ) ∈ ℝ ) |
45 |
39 44
|
ax-mp |
⊢ ( cos ‘ 1 ) ∈ ℝ |
46 |
40 29
|
rereccli |
⊢ ( 1 / 3 ) ∈ ℝ |
47 |
43 46 45
|
lelttri |
⊢ ( ( 0 ≤ ( 1 / 3 ) ∧ ( 1 / 3 ) < ( cos ‘ 1 ) ) → 0 < ( cos ‘ 1 ) ) |
48 |
42 36 47
|
mp2an |
⊢ 0 < ( cos ‘ 1 ) |
49 |
43 45 48
|
ltleii |
⊢ 0 ≤ ( cos ‘ 1 ) |
50 |
46 45
|
lt2sqi |
⊢ ( ( 0 ≤ ( 1 / 3 ) ∧ 0 ≤ ( cos ‘ 1 ) ) → ( ( 1 / 3 ) < ( cos ‘ 1 ) ↔ ( ( 1 / 3 ) ↑ 2 ) < ( ( cos ‘ 1 ) ↑ 2 ) ) ) |
51 |
42 49 50
|
mp2an |
⊢ ( ( 1 / 3 ) < ( cos ‘ 1 ) ↔ ( ( 1 / 3 ) ↑ 2 ) < ( ( cos ‘ 1 ) ↑ 2 ) ) |
52 |
36 51
|
mpbi |
⊢ ( ( 1 / 3 ) ↑ 2 ) < ( ( cos ‘ 1 ) ↑ 2 ) |
53 |
34 52
|
eqbrtrri |
⊢ ( 1 / 9 ) < ( ( cos ‘ 1 ) ↑ 2 ) |
54 |
|
2pos |
⊢ 0 < 2 |
55 |
3 5
|
rereccli |
⊢ ( 1 / 9 ) ∈ ℝ |
56 |
45
|
resqcli |
⊢ ( ( cos ‘ 1 ) ↑ 2 ) ∈ ℝ |
57 |
|
2re |
⊢ 2 ∈ ℝ |
58 |
55 56 57
|
ltmul2i |
⊢ ( 0 < 2 → ( ( 1 / 9 ) < ( ( cos ‘ 1 ) ↑ 2 ) ↔ ( 2 · ( 1 / 9 ) ) < ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) ) ) |
59 |
54 58
|
ax-mp |
⊢ ( ( 1 / 9 ) < ( ( cos ‘ 1 ) ↑ 2 ) ↔ ( 2 · ( 1 / 9 ) ) < ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) ) |
60 |
53 59
|
mpbi |
⊢ ( 2 · ( 1 / 9 ) ) < ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) |
61 |
27 60
|
eqbrtrri |
⊢ ( 2 / 9 ) < ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) |
62 |
57 3 5
|
redivcli |
⊢ ( 2 / 9 ) ∈ ℝ |
63 |
57 56
|
remulcli |
⊢ ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) ∈ ℝ |
64 |
|
ltsub1 |
⊢ ( ( ( 2 / 9 ) ∈ ℝ ∧ ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 2 / 9 ) < ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) ↔ ( ( 2 / 9 ) − 1 ) < ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) − 1 ) ) ) |
65 |
62 63 39 64
|
mp3an |
⊢ ( ( 2 / 9 ) < ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) ↔ ( ( 2 / 9 ) − 1 ) < ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) − 1 ) ) |
66 |
61 65
|
mpbi |
⊢ ( ( 2 / 9 ) − 1 ) < ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) − 1 ) |
67 |
22 66
|
eqbrtrri |
⊢ - ( 7 / 9 ) < ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) − 1 ) |
68 |
25
|
fveq2i |
⊢ ( cos ‘ ( 2 · 1 ) ) = ( cos ‘ 2 ) |
69 |
|
cos2t |
⊢ ( 1 ∈ ℂ → ( cos ‘ ( 2 · 1 ) ) = ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) − 1 ) ) |
70 |
23 69
|
ax-mp |
⊢ ( cos ‘ ( 2 · 1 ) ) = ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) − 1 ) |
71 |
68 70
|
eqtr3i |
⊢ ( cos ‘ 2 ) = ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) − 1 ) |
72 |
67 71
|
breqtrri |
⊢ - ( 7 / 9 ) < ( cos ‘ 2 ) |
73 |
35
|
simpri |
⊢ ( cos ‘ 1 ) < ( 2 / 3 ) |
74 |
|
0le2 |
⊢ 0 ≤ 2 |
75 |
57 40
|
divge0i |
⊢ ( ( 0 ≤ 2 ∧ 0 < 3 ) → 0 ≤ ( 2 / 3 ) ) |
76 |
74 38 75
|
mp2an |
⊢ 0 ≤ ( 2 / 3 ) |
77 |
57 40 29
|
redivcli |
⊢ ( 2 / 3 ) ∈ ℝ |
78 |
45 77
|
lt2sqi |
⊢ ( ( 0 ≤ ( cos ‘ 1 ) ∧ 0 ≤ ( 2 / 3 ) ) → ( ( cos ‘ 1 ) < ( 2 / 3 ) ↔ ( ( cos ‘ 1 ) ↑ 2 ) < ( ( 2 / 3 ) ↑ 2 ) ) ) |
79 |
49 76 78
|
mp2an |
⊢ ( ( cos ‘ 1 ) < ( 2 / 3 ) ↔ ( ( cos ‘ 1 ) ↑ 2 ) < ( ( 2 / 3 ) ↑ 2 ) ) |
80 |
73 79
|
mpbi |
⊢ ( ( cos ‘ 1 ) ↑ 2 ) < ( ( 2 / 3 ) ↑ 2 ) |
81 |
8 28 29
|
sqdivi |
⊢ ( ( 2 / 3 ) ↑ 2 ) = ( ( 2 ↑ 2 ) / ( 3 ↑ 2 ) ) |
82 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
83 |
82 32
|
oveq12i |
⊢ ( ( 2 ↑ 2 ) / ( 3 ↑ 2 ) ) = ( 4 / 9 ) |
84 |
81 83
|
eqtri |
⊢ ( ( 2 / 3 ) ↑ 2 ) = ( 4 / 9 ) |
85 |
80 84
|
breqtri |
⊢ ( ( cos ‘ 1 ) ↑ 2 ) < ( 4 / 9 ) |
86 |
|
4re |
⊢ 4 ∈ ℝ |
87 |
86 3 5
|
redivcli |
⊢ ( 4 / 9 ) ∈ ℝ |
88 |
56 87 57
|
ltmul2i |
⊢ ( 0 < 2 → ( ( ( cos ‘ 1 ) ↑ 2 ) < ( 4 / 9 ) ↔ ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) < ( 2 · ( 4 / 9 ) ) ) ) |
89 |
54 88
|
ax-mp |
⊢ ( ( ( cos ‘ 1 ) ↑ 2 ) < ( 4 / 9 ) ↔ ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) < ( 2 · ( 4 / 9 ) ) ) |
90 |
85 89
|
mpbi |
⊢ ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) < ( 2 · ( 4 / 9 ) ) |
91 |
|
4cn |
⊢ 4 ∈ ℂ |
92 |
8 91 2 5
|
divassi |
⊢ ( ( 2 · 4 ) / 9 ) = ( 2 · ( 4 / 9 ) ) |
93 |
|
4t2e8 |
⊢ ( 4 · 2 ) = 8 |
94 |
91 8 93
|
mulcomli |
⊢ ( 2 · 4 ) = 8 |
95 |
94
|
oveq1i |
⊢ ( ( 2 · 4 ) / 9 ) = ( 8 / 9 ) |
96 |
92 95
|
eqtr3i |
⊢ ( 2 · ( 4 / 9 ) ) = ( 8 / 9 ) |
97 |
90 96
|
breqtri |
⊢ ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) < ( 8 / 9 ) |
98 |
|
8re |
⊢ 8 ∈ ℝ |
99 |
98 3 5
|
redivcli |
⊢ ( 8 / 9 ) ∈ ℝ |
100 |
|
ltsub1 |
⊢ ( ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) ∈ ℝ ∧ ( 8 / 9 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) < ( 8 / 9 ) ↔ ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) − 1 ) < ( ( 8 / 9 ) − 1 ) ) ) |
101 |
63 99 39 100
|
mp3an |
⊢ ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) < ( 8 / 9 ) ↔ ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) − 1 ) < ( ( 8 / 9 ) − 1 ) ) |
102 |
97 101
|
mpbi |
⊢ ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) − 1 ) < ( ( 8 / 9 ) − 1 ) |
103 |
20
|
oveq2i |
⊢ ( ( 8 / 9 ) − ( 9 / 9 ) ) = ( ( 8 / 9 ) − 1 ) |
104 |
|
divneg |
⊢ ( ( 1 ∈ ℂ ∧ 9 ∈ ℂ ∧ 9 ≠ 0 ) → - ( 1 / 9 ) = ( - 1 / 9 ) ) |
105 |
23 2 5 104
|
mp3an |
⊢ - ( 1 / 9 ) = ( - 1 / 9 ) |
106 |
|
8cn |
⊢ 8 ∈ ℂ |
107 |
2 106
|
negsubdi2i |
⊢ - ( 9 − 8 ) = ( 8 − 9 ) |
108 |
|
8p1e9 |
⊢ ( 8 + 1 ) = 9 |
109 |
2 106 23 108
|
subaddrii |
⊢ ( 9 − 8 ) = 1 |
110 |
109
|
negeqi |
⊢ - ( 9 − 8 ) = - 1 |
111 |
107 110
|
eqtr3i |
⊢ ( 8 − 9 ) = - 1 |
112 |
111
|
oveq1i |
⊢ ( ( 8 − 9 ) / 9 ) = ( - 1 / 9 ) |
113 |
|
divsubdir |
⊢ ( ( 8 ∈ ℂ ∧ 9 ∈ ℂ ∧ ( 9 ∈ ℂ ∧ 9 ≠ 0 ) ) → ( ( 8 − 9 ) / 9 ) = ( ( 8 / 9 ) − ( 9 / 9 ) ) ) |
114 |
106 2 9 113
|
mp3an |
⊢ ( ( 8 − 9 ) / 9 ) = ( ( 8 / 9 ) − ( 9 / 9 ) ) |
115 |
105 112 114
|
3eqtr2ri |
⊢ ( ( 8 / 9 ) − ( 9 / 9 ) ) = - ( 1 / 9 ) |
116 |
103 115
|
eqtr3i |
⊢ ( ( 8 / 9 ) − 1 ) = - ( 1 / 9 ) |
117 |
102 116
|
breqtri |
⊢ ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) − 1 ) < - ( 1 / 9 ) |
118 |
71 117
|
eqbrtri |
⊢ ( cos ‘ 2 ) < - ( 1 / 9 ) |
119 |
72 118
|
pm3.2i |
⊢ ( - ( 7 / 9 ) < ( cos ‘ 2 ) ∧ ( cos ‘ 2 ) < - ( 1 / 9 ) ) |