| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zcn |
⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℂ ) |
| 2 |
|
2cn |
⊢ 2 ∈ ℂ |
| 3 |
|
picn |
⊢ π ∈ ℂ |
| 4 |
2 3
|
mulcli |
⊢ ( 2 · π ) ∈ ℂ |
| 5 |
|
mulcl |
⊢ ( ( 𝐾 ∈ ℂ ∧ ( 2 · π ) ∈ ℂ ) → ( 𝐾 · ( 2 · π ) ) ∈ ℂ ) |
| 6 |
1 4 5
|
sylancl |
⊢ ( 𝐾 ∈ ℤ → ( 𝐾 · ( 2 · π ) ) ∈ ℂ ) |
| 7 |
6
|
addlidd |
⊢ ( 𝐾 ∈ ℤ → ( 0 + ( 𝐾 · ( 2 · π ) ) ) = ( 𝐾 · ( 2 · π ) ) ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝐾 ∈ ℤ → ( cos ‘ ( 0 + ( 𝐾 · ( 2 · π ) ) ) ) = ( cos ‘ ( 𝐾 · ( 2 · π ) ) ) ) |
| 9 |
|
0cn |
⊢ 0 ∈ ℂ |
| 10 |
|
cosper |
⊢ ( ( 0 ∈ ℂ ∧ 𝐾 ∈ ℤ ) → ( cos ‘ ( 0 + ( 𝐾 · ( 2 · π ) ) ) ) = ( cos ‘ 0 ) ) |
| 11 |
9 10
|
mpan |
⊢ ( 𝐾 ∈ ℤ → ( cos ‘ ( 0 + ( 𝐾 · ( 2 · π ) ) ) ) = ( cos ‘ 0 ) ) |
| 12 |
|
cos0 |
⊢ ( cos ‘ 0 ) = 1 |
| 13 |
11 12
|
eqtrdi |
⊢ ( 𝐾 ∈ ℤ → ( cos ‘ ( 0 + ( 𝐾 · ( 2 · π ) ) ) ) = 1 ) |
| 14 |
8 13
|
eqtr3d |
⊢ ( 𝐾 ∈ ℤ → ( cos ‘ ( 𝐾 · ( 2 · π ) ) ) = 1 ) |