Metamath Proof Explorer


Theorem cos2pi

Description: The cosine of 2 _pi is 1. (Contributed by Paul Chapman, 23-Jan-2008)

Ref Expression
Assertion cos2pi ( cos ‘ ( 2 · π ) ) = 1

Proof

Step Hyp Ref Expression
1 picn π ∈ ℂ
2 cos2t ( π ∈ ℂ → ( cos ‘ ( 2 · π ) ) = ( ( 2 · ( ( cos ‘ π ) ↑ 2 ) ) − 1 ) )
3 1 2 ax-mp ( cos ‘ ( 2 · π ) ) = ( ( 2 · ( ( cos ‘ π ) ↑ 2 ) ) − 1 )
4 cospi ( cos ‘ π ) = - 1
5 4 oveq1i ( ( cos ‘ π ) ↑ 2 ) = ( - 1 ↑ 2 )
6 ax-1cn 1 ∈ ℂ
7 sqneg ( 1 ∈ ℂ → ( - 1 ↑ 2 ) = ( 1 ↑ 2 ) )
8 6 7 ax-mp ( - 1 ↑ 2 ) = ( 1 ↑ 2 )
9 sq1 ( 1 ↑ 2 ) = 1
10 5 8 9 3eqtri ( ( cos ‘ π ) ↑ 2 ) = 1
11 10 oveq2i ( 2 · ( ( cos ‘ π ) ↑ 2 ) ) = ( 2 · 1 )
12 2t1e2 ( 2 · 1 ) = 2
13 11 12 eqtri ( 2 · ( ( cos ‘ π ) ↑ 2 ) ) = 2
14 13 oveq1i ( ( 2 · ( ( cos ‘ π ) ↑ 2 ) ) − 1 ) = ( 2 − 1 )
15 2m1e1 ( 2 − 1 ) = 1
16 3 14 15 3eqtri ( cos ‘ ( 2 · π ) ) = 1