| Step | Hyp | Ref | Expression | 
						
							| 1 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 2 |  | cos2t | ⊢ ( π  ∈  ℂ  →  ( cos ‘ ( 2  ·  π ) )  =  ( ( 2  ·  ( ( cos ‘ π ) ↑ 2 ) )  −  1 ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( cos ‘ ( 2  ·  π ) )  =  ( ( 2  ·  ( ( cos ‘ π ) ↑ 2 ) )  −  1 ) | 
						
							| 4 |  | cospi | ⊢ ( cos ‘ π )  =  - 1 | 
						
							| 5 | 4 | oveq1i | ⊢ ( ( cos ‘ π ) ↑ 2 )  =  ( - 1 ↑ 2 ) | 
						
							| 6 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 7 |  | sqneg | ⊢ ( 1  ∈  ℂ  →  ( - 1 ↑ 2 )  =  ( 1 ↑ 2 ) ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ ( - 1 ↑ 2 )  =  ( 1 ↑ 2 ) | 
						
							| 9 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 10 | 5 8 9 | 3eqtri | ⊢ ( ( cos ‘ π ) ↑ 2 )  =  1 | 
						
							| 11 | 10 | oveq2i | ⊢ ( 2  ·  ( ( cos ‘ π ) ↑ 2 ) )  =  ( 2  ·  1 ) | 
						
							| 12 |  | 2t1e2 | ⊢ ( 2  ·  1 )  =  2 | 
						
							| 13 | 11 12 | eqtri | ⊢ ( 2  ·  ( ( cos ‘ π ) ↑ 2 ) )  =  2 | 
						
							| 14 | 13 | oveq1i | ⊢ ( ( 2  ·  ( ( cos ‘ π ) ↑ 2 ) )  −  1 )  =  ( 2  −  1 ) | 
						
							| 15 |  | 2m1e1 | ⊢ ( 2  −  1 )  =  1 | 
						
							| 16 | 3 14 15 | 3eqtri | ⊢ ( cos ‘ ( 2  ·  π ) )  =  1 |