Step |
Hyp |
Ref |
Expression |
1 |
|
coscl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) |
2 |
1
|
sqcld |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
3 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
4 |
|
subsub3 |
⊢ ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) − ( 1 − ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) = ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) − 1 ) ) |
5 |
3 4
|
mp3an2 |
⊢ ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ∧ ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) − ( 1 − ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) = ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) − 1 ) ) |
6 |
2 2 5
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) − ( 1 − ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) = ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) − 1 ) ) |
7 |
|
cosadd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( cos ‘ ( 𝐴 + 𝐴 ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐴 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐴 ) ) ) ) |
8 |
7
|
anidms |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 𝐴 + 𝐴 ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐴 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐴 ) ) ) ) |
9 |
|
2times |
⊢ ( 𝐴 ∈ ℂ → ( 2 · 𝐴 ) = ( 𝐴 + 𝐴 ) ) |
10 |
9
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 2 · 𝐴 ) ) = ( cos ‘ ( 𝐴 + 𝐴 ) ) ) |
11 |
1
|
sqvald |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) ↑ 2 ) = ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐴 ) ) ) |
12 |
|
sincl |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) |
13 |
12
|
sqvald |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) ↑ 2 ) = ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐴 ) ) ) |
14 |
11 13
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) − ( ( sin ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐴 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐴 ) ) ) ) |
15 |
8 10 14
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 2 · 𝐴 ) ) = ( ( ( cos ‘ 𝐴 ) ↑ 2 ) − ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) |
16 |
12
|
sqcld |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
17 |
16 2
|
addcomd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) |
18 |
|
sincossq |
⊢ ( 𝐴 ∈ ℂ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
19 |
17 18
|
eqtr3d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
20 |
|
subadd |
⊢ ( ( 1 ∈ ℂ ∧ ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ∧ ( ( sin ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) → ( ( 1 − ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( ( sin ‘ 𝐴 ) ↑ 2 ) ↔ ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) = 1 ) ) |
21 |
3 2 16 20
|
mp3an2i |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 − ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( ( sin ‘ 𝐴 ) ↑ 2 ) ↔ ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) = 1 ) ) |
22 |
19 21
|
mpbird |
⊢ ( 𝐴 ∈ ℂ → ( 1 − ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( ( sin ‘ 𝐴 ) ↑ 2 ) ) |
23 |
22
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) − ( 1 − ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) = ( ( ( cos ‘ 𝐴 ) ↑ 2 ) − ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) |
24 |
15 23
|
eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 2 · 𝐴 ) ) = ( ( ( cos ‘ 𝐴 ) ↑ 2 ) − ( 1 − ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) ) |
25 |
2
|
2timesd |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
26 |
25
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( 2 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) − 1 ) = ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) − 1 ) ) |
27 |
6 24 26
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 2 · 𝐴 ) ) = ( ( 2 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) − 1 ) ) |