| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cos2t |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 2 · 𝐴 ) ) = ( ( 2 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) − 1 ) ) |
| 2 |
|
2cn |
⊢ 2 ∈ ℂ |
| 3 |
|
sincl |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) |
| 4 |
3
|
sqcld |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 5 |
|
coscl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) |
| 6 |
5
|
sqcld |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 7 |
|
adddi |
⊢ ( ( 2 ∈ ℂ ∧ ( ( sin ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ∧ ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) → ( 2 · ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) = ( ( 2 · ( ( sin ‘ 𝐴 ) ↑ 2 ) ) + ( 2 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 8 |
2 4 6 7
|
mp3an2i |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) = ( ( 2 · ( ( sin ‘ 𝐴 ) ↑ 2 ) ) + ( 2 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 9 |
|
sincossq |
⊢ ( 𝐴 ∈ ℂ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) = ( 2 · 1 ) ) |
| 11 |
8 10
|
eqtr3d |
⊢ ( 𝐴 ∈ ℂ → ( ( 2 · ( ( sin ‘ 𝐴 ) ↑ 2 ) ) + ( 2 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) = ( 2 · 1 ) ) |
| 12 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
| 13 |
11 12
|
eqtrdi |
⊢ ( 𝐴 ∈ ℂ → ( ( 2 · ( ( sin ‘ 𝐴 ) ↑ 2 ) ) + ( 2 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) = 2 ) |
| 14 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ ( ( sin ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) → ( 2 · ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ∈ ℂ ) |
| 15 |
2 4 14
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ∈ ℂ ) |
| 16 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) → ( 2 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ∈ ℂ ) |
| 17 |
2 6 16
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ∈ ℂ ) |
| 18 |
|
subadd |
⊢ ( ( 2 ∈ ℂ ∧ ( 2 · ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ∈ ℂ ∧ ( 2 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ∈ ℂ ) → ( ( 2 − ( 2 · ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) = ( 2 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ↔ ( ( 2 · ( ( sin ‘ 𝐴 ) ↑ 2 ) ) + ( 2 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) = 2 ) ) |
| 19 |
2 15 17 18
|
mp3an2i |
⊢ ( 𝐴 ∈ ℂ → ( ( 2 − ( 2 · ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) = ( 2 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ↔ ( ( 2 · ( ( sin ‘ 𝐴 ) ↑ 2 ) ) + ( 2 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) = 2 ) ) |
| 20 |
13 19
|
mpbird |
⊢ ( 𝐴 ∈ ℂ → ( 2 − ( 2 · ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) = ( 2 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
| 21 |
20
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( 2 − ( 2 · ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) − 1 ) = ( ( 2 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) − 1 ) ) |
| 22 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 23 |
|
sub32 |
⊢ ( ( 2 ∈ ℂ ∧ ( 2 · ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 2 − ( 2 · ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) − 1 ) = ( ( 2 − 1 ) − ( 2 · ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 24 |
2 22 23
|
mp3an13 |
⊢ ( ( 2 · ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ∈ ℂ → ( ( 2 − ( 2 · ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) − 1 ) = ( ( 2 − 1 ) − ( 2 · ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 25 |
15 24
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( 2 − ( 2 · ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) − 1 ) = ( ( 2 − 1 ) − ( 2 · ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 26 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 27 |
26
|
oveq1i |
⊢ ( ( 2 − 1 ) − ( 2 · ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) = ( 1 − ( 2 · ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) |
| 28 |
25 27
|
eqtrdi |
⊢ ( 𝐴 ∈ ℂ → ( ( 2 − ( 2 · ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) − 1 ) = ( 1 − ( 2 · ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 29 |
1 21 28
|
3eqtr2d |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 2 · 𝐴 ) ) = ( 1 − ( 2 · ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) ) |