Step |
Hyp |
Ref |
Expression |
1 |
|
acosval |
⊢ ( 𝐴 ∈ ℂ → ( arccos ‘ 𝐴 ) = ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) |
2 |
1
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( arccos ‘ 𝐴 ) ) = ( cos ‘ ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) ) |
3 |
|
asincl |
⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ 𝐴 ) ∈ ℂ ) |
4 |
|
coshalfpim |
⊢ ( ( arcsin ‘ 𝐴 ) ∈ ℂ → ( cos ‘ ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) = ( sin ‘ ( arcsin ‘ 𝐴 ) ) ) |
5 |
3 4
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) = ( sin ‘ ( arcsin ‘ 𝐴 ) ) ) |
6 |
|
sinasin |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( arcsin ‘ 𝐴 ) ) = 𝐴 ) |
7 |
2 5 6
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( arccos ‘ 𝐴 ) ) = 𝐴 ) |