Step |
Hyp |
Ref |
Expression |
1 |
|
addcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
2 |
|
cosval |
⊢ ( ( 𝐴 + 𝐵 ) ∈ ℂ → ( cos ‘ ( 𝐴 + 𝐵 ) ) = ( ( ( exp ‘ ( i · ( 𝐴 + 𝐵 ) ) ) + ( exp ‘ ( - i · ( 𝐴 + 𝐵 ) ) ) ) / 2 ) ) |
3 |
1 2
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( cos ‘ ( 𝐴 + 𝐵 ) ) = ( ( ( exp ‘ ( i · ( 𝐴 + 𝐵 ) ) ) + ( exp ‘ ( - i · ( 𝐴 + 𝐵 ) ) ) ) / 2 ) ) |
4 |
|
coscl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) |
5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( cos ‘ 𝐴 ) ∈ ℂ ) |
6 |
|
coscl |
⊢ ( 𝐵 ∈ ℂ → ( cos ‘ 𝐵 ) ∈ ℂ ) |
7 |
6
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( cos ‘ 𝐵 ) ∈ ℂ ) |
8 |
5 7
|
mulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ∈ ℂ ) |
9 |
|
ax-icn |
⊢ i ∈ ℂ |
10 |
|
sincl |
⊢ ( 𝐵 ∈ ℂ → ( sin ‘ 𝐵 ) ∈ ℂ ) |
11 |
10
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( sin ‘ 𝐵 ) ∈ ℂ ) |
12 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( sin ‘ 𝐵 ) ∈ ℂ ) → ( i · ( sin ‘ 𝐵 ) ) ∈ ℂ ) |
13 |
9 11 12
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( sin ‘ 𝐵 ) ) ∈ ℂ ) |
14 |
|
sincl |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) |
15 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( sin ‘ 𝐴 ) ∈ ℂ ) |
16 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( sin ‘ 𝐴 ) ∈ ℂ ) → ( i · ( sin ‘ 𝐴 ) ) ∈ ℂ ) |
17 |
9 15 16
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( sin ‘ 𝐴 ) ) ∈ ℂ ) |
18 |
13 17
|
mulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ∈ ℂ ) |
19 |
8 18
|
addcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ∈ ℂ ) |
20 |
5 13
|
mulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) ∈ ℂ ) |
21 |
7 17
|
mulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ∈ ℂ ) |
22 |
20 21
|
addcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ∈ ℂ ) |
23 |
19 22 19
|
ppncand |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) + ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) + ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) − ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) + ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
24 |
|
adddi |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( 𝐴 + 𝐵 ) ) = ( ( i · 𝐴 ) + ( i · 𝐵 ) ) ) |
25 |
9 24
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( 𝐴 + 𝐵 ) ) = ( ( i · 𝐴 ) + ( i · 𝐵 ) ) ) |
26 |
25
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( i · ( 𝐴 + 𝐵 ) ) ) = ( exp ‘ ( ( i · 𝐴 ) + ( i · 𝐵 ) ) ) ) |
27 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
28 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
29 |
9 27 28
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
30 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
31 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · 𝐵 ) ∈ ℂ ) |
32 |
9 30 31
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · 𝐵 ) ∈ ℂ ) |
33 |
|
efadd |
⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ ( i · 𝐵 ) ∈ ℂ ) → ( exp ‘ ( ( i · 𝐴 ) + ( i · 𝐵 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( i · 𝐵 ) ) ) ) |
34 |
29 32 33
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( ( i · 𝐴 ) + ( i · 𝐵 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( i · 𝐵 ) ) ) ) |
35 |
|
efival |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) = ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) |
36 |
|
efival |
⊢ ( 𝐵 ∈ ℂ → ( exp ‘ ( i · 𝐵 ) ) = ( ( cos ‘ 𝐵 ) + ( i · ( sin ‘ 𝐵 ) ) ) ) |
37 |
35 36
|
oveqan12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( i · 𝐵 ) ) ) = ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) · ( ( cos ‘ 𝐵 ) + ( i · ( sin ‘ 𝐵 ) ) ) ) ) |
38 |
5 17 7 13
|
muladdd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) · ( ( cos ‘ 𝐵 ) + ( i · ( sin ‘ 𝐵 ) ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) + ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
39 |
37 38
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( i · 𝐵 ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) + ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
40 |
26 34 39
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( i · ( 𝐴 + 𝐵 ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) + ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
41 |
|
negicn |
⊢ - i ∈ ℂ |
42 |
|
adddi |
⊢ ( ( - i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - i · ( 𝐴 + 𝐵 ) ) = ( ( - i · 𝐴 ) + ( - i · 𝐵 ) ) ) |
43 |
41 42
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - i · ( 𝐴 + 𝐵 ) ) = ( ( - i · 𝐴 ) + ( - i · 𝐵 ) ) ) |
44 |
43
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( - i · ( 𝐴 + 𝐵 ) ) ) = ( exp ‘ ( ( - i · 𝐴 ) + ( - i · 𝐵 ) ) ) ) |
45 |
|
mulcl |
⊢ ( ( - i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - i · 𝐴 ) ∈ ℂ ) |
46 |
41 27 45
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - i · 𝐴 ) ∈ ℂ ) |
47 |
|
mulcl |
⊢ ( ( - i ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - i · 𝐵 ) ∈ ℂ ) |
48 |
41 30 47
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - i · 𝐵 ) ∈ ℂ ) |
49 |
|
efadd |
⊢ ( ( ( - i · 𝐴 ) ∈ ℂ ∧ ( - i · 𝐵 ) ∈ ℂ ) → ( exp ‘ ( ( - i · 𝐴 ) + ( - i · 𝐵 ) ) ) = ( ( exp ‘ ( - i · 𝐴 ) ) · ( exp ‘ ( - i · 𝐵 ) ) ) ) |
50 |
46 48 49
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( ( - i · 𝐴 ) + ( - i · 𝐵 ) ) ) = ( ( exp ‘ ( - i · 𝐴 ) ) · ( exp ‘ ( - i · 𝐵 ) ) ) ) |
51 |
|
efmival |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · 𝐴 ) ) = ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) ) |
52 |
|
efmival |
⊢ ( 𝐵 ∈ ℂ → ( exp ‘ ( - i · 𝐵 ) ) = ( ( cos ‘ 𝐵 ) − ( i · ( sin ‘ 𝐵 ) ) ) ) |
53 |
51 52
|
oveqan12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( exp ‘ ( - i · 𝐴 ) ) · ( exp ‘ ( - i · 𝐵 ) ) ) = ( ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) · ( ( cos ‘ 𝐵 ) − ( i · ( sin ‘ 𝐵 ) ) ) ) ) |
54 |
5 17 7 13
|
mulsubd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) · ( ( cos ‘ 𝐵 ) − ( i · ( sin ‘ 𝐵 ) ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) − ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
55 |
53 54
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( exp ‘ ( - i · 𝐴 ) ) · ( exp ‘ ( - i · 𝐵 ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) − ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
56 |
44 50 55
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( - i · ( 𝐴 + 𝐵 ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) − ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
57 |
40 56
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( exp ‘ ( i · ( 𝐴 + 𝐵 ) ) ) + ( exp ‘ ( - i · ( 𝐴 + 𝐵 ) ) ) ) = ( ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) + ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) + ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) − ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) ) |
58 |
19
|
2timesd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) + ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
59 |
23 57 58
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( exp ‘ ( i · ( 𝐴 + 𝐵 ) ) ) + ( exp ‘ ( - i · ( 𝐴 + 𝐵 ) ) ) ) = ( 2 · ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
60 |
59
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( exp ‘ ( i · ( 𝐴 + 𝐵 ) ) ) + ( exp ‘ ( - i · ( 𝐴 + 𝐵 ) ) ) ) / 2 ) = ( ( 2 · ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) / 2 ) ) |
61 |
|
2cn |
⊢ 2 ∈ ℂ |
62 |
|
2ne0 |
⊢ 2 ≠ 0 |
63 |
|
divcan3 |
⊢ ( ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( 2 · ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) / 2 ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) |
64 |
61 62 63
|
mp3an23 |
⊢ ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ∈ ℂ → ( ( 2 · ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) / 2 ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) |
65 |
19 64
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 2 · ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) / 2 ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) |
66 |
9
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → i ∈ ℂ ) |
67 |
66 11 66 15
|
mul4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) = ( ( i · i ) · ( ( sin ‘ 𝐵 ) · ( sin ‘ 𝐴 ) ) ) ) |
68 |
|
ixi |
⊢ ( i · i ) = - 1 |
69 |
68
|
oveq1i |
⊢ ( ( i · i ) · ( ( sin ‘ 𝐵 ) · ( sin ‘ 𝐴 ) ) ) = ( - 1 · ( ( sin ‘ 𝐵 ) · ( sin ‘ 𝐴 ) ) ) |
70 |
11 15
|
mulcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( sin ‘ 𝐵 ) · ( sin ‘ 𝐴 ) ) = ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) |
71 |
70
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 1 · ( ( sin ‘ 𝐵 ) · ( sin ‘ 𝐴 ) ) ) = ( - 1 · ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
72 |
69 71
|
eqtrid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · i ) · ( ( sin ‘ 𝐵 ) · ( sin ‘ 𝐴 ) ) ) = ( - 1 · ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
73 |
15 11
|
mulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ∈ ℂ ) |
74 |
73
|
mulm1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 1 · ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) = - ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) |
75 |
67 72 74
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) = - ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) |
76 |
75
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + - ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
77 |
8 73
|
negsubd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + - ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
78 |
65 76 77
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 2 · ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) / 2 ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
79 |
3 60 78
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( cos ‘ ( 𝐴 + 𝐵 ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |