| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cosargd.1 | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 2 |  | cosargd.2 | ⊢ ( 𝜑  →  𝑋  ≠  0 ) | 
						
							| 3 | 1 2 | cosargd | ⊢ ( 𝜑  →  ( cos ‘ ( ℑ ‘ ( log ‘ 𝑋 ) ) )  =  ( ( ℜ ‘ 𝑋 )  /  ( abs ‘ 𝑋 ) ) ) | 
						
							| 4 | 3 | eqeq1d | ⊢ ( 𝜑  →  ( ( cos ‘ ( ℑ ‘ ( log ‘ 𝑋 ) ) )  =  0  ↔  ( ( ℜ ‘ 𝑋 )  /  ( abs ‘ 𝑋 ) )  =  0 ) ) | 
						
							| 5 | 1 | recld | ⊢ ( 𝜑  →  ( ℜ ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 6 | 5 | recnd | ⊢ ( 𝜑  →  ( ℜ ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 7 | 1 | abscld | ⊢ ( 𝜑  →  ( abs ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 8 | 7 | recnd | ⊢ ( 𝜑  →  ( abs ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 9 | 1 2 | absne0d | ⊢ ( 𝜑  →  ( abs ‘ 𝑋 )  ≠  0 ) | 
						
							| 10 | 6 8 9 | diveq0ad | ⊢ ( 𝜑  →  ( ( ( ℜ ‘ 𝑋 )  /  ( abs ‘ 𝑋 ) )  =  0  ↔  ( ℜ ‘ 𝑋 )  =  0 ) ) | 
						
							| 11 | 4 10 | bitrd | ⊢ ( 𝜑  →  ( ( cos ‘ ( ℑ ‘ ( log ‘ 𝑋 ) ) )  =  0  ↔  ( ℜ ‘ 𝑋 )  =  0 ) ) |