| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cosargd.1 | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 2 |  | cosargd.2 | ⊢ ( 𝜑  →  𝑋  ≠  0 ) | 
						
							| 3 | 1 | cjcld | ⊢ ( 𝜑  →  ( ∗ ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 4 | 1 3 | addcld | ⊢ ( 𝜑  →  ( 𝑋  +  ( ∗ ‘ 𝑋 ) )  ∈  ℂ ) | 
						
							| 5 | 1 | abscld | ⊢ ( 𝜑  →  ( abs ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 6 | 5 | recnd | ⊢ ( 𝜑  →  ( abs ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 7 |  | 2cnd | ⊢ ( 𝜑  →  2  ∈  ℂ ) | 
						
							| 8 | 1 2 | absne0d | ⊢ ( 𝜑  →  ( abs ‘ 𝑋 )  ≠  0 ) | 
						
							| 9 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  2  ≠  0 ) | 
						
							| 11 | 4 6 7 8 10 | divdiv32d | ⊢ ( 𝜑  →  ( ( ( 𝑋  +  ( ∗ ‘ 𝑋 ) )  /  ( abs ‘ 𝑋 ) )  /  2 )  =  ( ( ( 𝑋  +  ( ∗ ‘ 𝑋 ) )  /  2 )  /  ( abs ‘ 𝑋 ) ) ) | 
						
							| 12 | 1 2 | logcld | ⊢ ( 𝜑  →  ( log ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 13 | 12 | imcld | ⊢ ( 𝜑  →  ( ℑ ‘ ( log ‘ 𝑋 ) )  ∈  ℝ ) | 
						
							| 14 | 13 | recnd | ⊢ ( 𝜑  →  ( ℑ ‘ ( log ‘ 𝑋 ) )  ∈  ℂ ) | 
						
							| 15 |  | cosval | ⊢ ( ( ℑ ‘ ( log ‘ 𝑋 ) )  ∈  ℂ  →  ( cos ‘ ( ℑ ‘ ( log ‘ 𝑋 ) ) )  =  ( ( ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) )  +  ( exp ‘ ( - i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) )  /  2 ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝜑  →  ( cos ‘ ( ℑ ‘ ( log ‘ 𝑋 ) ) )  =  ( ( ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) )  +  ( exp ‘ ( - i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) )  /  2 ) ) | 
						
							| 17 |  | efiarg | ⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑋  ≠  0 )  →  ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) )  =  ( 𝑋  /  ( abs ‘ 𝑋 ) ) ) | 
						
							| 18 | 1 2 17 | syl2anc | ⊢ ( 𝜑  →  ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) )  =  ( 𝑋  /  ( abs ‘ 𝑋 ) ) ) | 
						
							| 19 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 20 | 19 | a1i | ⊢ ( 𝜑  →  i  ∈  ℂ ) | 
						
							| 21 | 20 14 | mulcld | ⊢ ( 𝜑  →  ( i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) )  ∈  ℂ ) | 
						
							| 22 |  | efcj | ⊢ ( ( i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) )  ∈  ℂ  →  ( exp ‘ ( ∗ ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) )  =  ( ∗ ‘ ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) ) ) | 
						
							| 23 | 21 22 | syl | ⊢ ( 𝜑  →  ( exp ‘ ( ∗ ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) )  =  ( ∗ ‘ ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) ) ) | 
						
							| 24 | 20 14 | cjmuld | ⊢ ( 𝜑  →  ( ∗ ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) )  =  ( ( ∗ ‘ i )  ·  ( ∗ ‘ ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) ) | 
						
							| 25 |  | cji | ⊢ ( ∗ ‘ i )  =  - i | 
						
							| 26 | 25 | a1i | ⊢ ( 𝜑  →  ( ∗ ‘ i )  =  - i ) | 
						
							| 27 | 13 | cjred | ⊢ ( 𝜑  →  ( ∗ ‘ ( ℑ ‘ ( log ‘ 𝑋 ) ) )  =  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) | 
						
							| 28 | 26 27 | oveq12d | ⊢ ( 𝜑  →  ( ( ∗ ‘ i )  ·  ( ∗ ‘ ( ℑ ‘ ( log ‘ 𝑋 ) ) ) )  =  ( - i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) | 
						
							| 29 | 24 28 | eqtrd | ⊢ ( 𝜑  →  ( ∗ ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) )  =  ( - i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) | 
						
							| 30 | 29 | fveq2d | ⊢ ( 𝜑  →  ( exp ‘ ( ∗ ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) )  =  ( exp ‘ ( - i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) ) | 
						
							| 31 | 18 | fveq2d | ⊢ ( 𝜑  →  ( ∗ ‘ ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) )  =  ( ∗ ‘ ( 𝑋  /  ( abs ‘ 𝑋 ) ) ) ) | 
						
							| 32 | 23 30 31 | 3eqtr3d | ⊢ ( 𝜑  →  ( exp ‘ ( - i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) )  =  ( ∗ ‘ ( 𝑋  /  ( abs ‘ 𝑋 ) ) ) ) | 
						
							| 33 | 1 6 8 | cjdivd | ⊢ ( 𝜑  →  ( ∗ ‘ ( 𝑋  /  ( abs ‘ 𝑋 ) ) )  =  ( ( ∗ ‘ 𝑋 )  /  ( ∗ ‘ ( abs ‘ 𝑋 ) ) ) ) | 
						
							| 34 | 5 | cjred | ⊢ ( 𝜑  →  ( ∗ ‘ ( abs ‘ 𝑋 ) )  =  ( abs ‘ 𝑋 ) ) | 
						
							| 35 | 34 | oveq2d | ⊢ ( 𝜑  →  ( ( ∗ ‘ 𝑋 )  /  ( ∗ ‘ ( abs ‘ 𝑋 ) ) )  =  ( ( ∗ ‘ 𝑋 )  /  ( abs ‘ 𝑋 ) ) ) | 
						
							| 36 | 32 33 35 | 3eqtrd | ⊢ ( 𝜑  →  ( exp ‘ ( - i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) )  =  ( ( ∗ ‘ 𝑋 )  /  ( abs ‘ 𝑋 ) ) ) | 
						
							| 37 | 18 36 | oveq12d | ⊢ ( 𝜑  →  ( ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) )  +  ( exp ‘ ( - i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) )  =  ( ( 𝑋  /  ( abs ‘ 𝑋 ) )  +  ( ( ∗ ‘ 𝑋 )  /  ( abs ‘ 𝑋 ) ) ) ) | 
						
							| 38 | 1 3 6 8 | divdird | ⊢ ( 𝜑  →  ( ( 𝑋  +  ( ∗ ‘ 𝑋 ) )  /  ( abs ‘ 𝑋 ) )  =  ( ( 𝑋  /  ( abs ‘ 𝑋 ) )  +  ( ( ∗ ‘ 𝑋 )  /  ( abs ‘ 𝑋 ) ) ) ) | 
						
							| 39 | 37 38 | eqtr4d | ⊢ ( 𝜑  →  ( ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) )  +  ( exp ‘ ( - i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) )  =  ( ( 𝑋  +  ( ∗ ‘ 𝑋 ) )  /  ( abs ‘ 𝑋 ) ) ) | 
						
							| 40 | 39 | oveq1d | ⊢ ( 𝜑  →  ( ( ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) )  +  ( exp ‘ ( - i  ·  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) )  /  2 )  =  ( ( ( 𝑋  +  ( ∗ ‘ 𝑋 ) )  /  ( abs ‘ 𝑋 ) )  /  2 ) ) | 
						
							| 41 | 16 40 | eqtrd | ⊢ ( 𝜑  →  ( cos ‘ ( ℑ ‘ ( log ‘ 𝑋 ) ) )  =  ( ( ( 𝑋  +  ( ∗ ‘ 𝑋 ) )  /  ( abs ‘ 𝑋 ) )  /  2 ) ) | 
						
							| 42 |  | reval | ⊢ ( 𝑋  ∈  ℂ  →  ( ℜ ‘ 𝑋 )  =  ( ( 𝑋  +  ( ∗ ‘ 𝑋 ) )  /  2 ) ) | 
						
							| 43 | 1 42 | syl | ⊢ ( 𝜑  →  ( ℜ ‘ 𝑋 )  =  ( ( 𝑋  +  ( ∗ ‘ 𝑋 ) )  /  2 ) ) | 
						
							| 44 | 43 | oveq1d | ⊢ ( 𝜑  →  ( ( ℜ ‘ 𝑋 )  /  ( abs ‘ 𝑋 ) )  =  ( ( ( 𝑋  +  ( ∗ ‘ 𝑋 ) )  /  2 )  /  ( abs ‘ 𝑋 ) ) ) | 
						
							| 45 | 11 41 44 | 3eqtr4d | ⊢ ( 𝜑  →  ( cos ‘ ( ℑ ‘ ( log ‘ 𝑋 ) ) )  =  ( ( ℜ ‘ 𝑋 )  /  ( abs ‘ 𝑋 ) ) ) |