Step |
Hyp |
Ref |
Expression |
1 |
|
asincl |
⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ 𝐴 ) ∈ ℂ ) |
2 |
|
cosval |
⊢ ( ( arcsin ‘ 𝐴 ) ∈ ℂ → ( cos ‘ ( arcsin ‘ 𝐴 ) ) = ( ( ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) + ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ) / 2 ) ) |
3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( arcsin ‘ 𝐴 ) ) = ( ( ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) + ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ) / 2 ) ) |
4 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
5 |
|
sqcl |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
6 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
7 |
4 5 6
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
8 |
7
|
sqrtcld |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
9 |
|
ax-icn |
⊢ i ∈ ℂ |
10 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
11 |
9 10
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
12 |
8 11 8
|
ppncand |
⊢ ( 𝐴 ∈ ℂ → ( ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) + ( i · 𝐴 ) ) + ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) − ( i · 𝐴 ) ) ) = ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
13 |
|
efiasin |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) = ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
14 |
11 8 13
|
comraddd |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) = ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) + ( i · 𝐴 ) ) ) |
15 |
|
mulneg12 |
⊢ ( ( i ∈ ℂ ∧ ( arcsin ‘ 𝐴 ) ∈ ℂ ) → ( - i · ( arcsin ‘ 𝐴 ) ) = ( i · - ( arcsin ‘ 𝐴 ) ) ) |
16 |
9 1 15
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( - i · ( arcsin ‘ 𝐴 ) ) = ( i · - ( arcsin ‘ 𝐴 ) ) ) |
17 |
|
asinneg |
⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ - 𝐴 ) = - ( arcsin ‘ 𝐴 ) ) |
18 |
17
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( i · ( arcsin ‘ - 𝐴 ) ) = ( i · - ( arcsin ‘ 𝐴 ) ) ) |
19 |
16 18
|
eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( - i · ( arcsin ‘ 𝐴 ) ) = ( i · ( arcsin ‘ - 𝐴 ) ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) = ( exp ‘ ( i · ( arcsin ‘ - 𝐴 ) ) ) ) |
21 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
22 |
|
efiasin |
⊢ ( - 𝐴 ∈ ℂ → ( exp ‘ ( i · ( arcsin ‘ - 𝐴 ) ) ) = ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) |
23 |
21 22
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( arcsin ‘ - 𝐴 ) ) ) = ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) |
24 |
|
mulneg2 |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) |
25 |
9 24
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) |
26 |
|
sqneg |
⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
27 |
26
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( 1 − ( - 𝐴 ↑ 2 ) ) = ( 1 − ( 𝐴 ↑ 2 ) ) ) |
28 |
27
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) = ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) |
29 |
25 28
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) = ( - ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
30 |
20 23 29
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) = ( - ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
31 |
11
|
negcld |
⊢ ( 𝐴 ∈ ℂ → - ( i · 𝐴 ) ∈ ℂ ) |
32 |
31 8
|
addcomd |
⊢ ( 𝐴 ∈ ℂ → ( - ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) = ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) + - ( i · 𝐴 ) ) ) |
33 |
8 11
|
negsubd |
⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) + - ( i · 𝐴 ) ) = ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) − ( i · 𝐴 ) ) ) |
34 |
30 32 33
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) = ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) − ( i · 𝐴 ) ) ) |
35 |
14 34
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) + ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ) = ( ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) + ( i · 𝐴 ) ) + ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) − ( i · 𝐴 ) ) ) ) |
36 |
8
|
2timesd |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) = ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
37 |
12 35 36
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) + ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ) = ( 2 · ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
38 |
37
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) + ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ) / 2 ) = ( ( 2 · ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) / 2 ) ) |
39 |
|
2cnd |
⊢ ( 𝐴 ∈ ℂ → 2 ∈ ℂ ) |
40 |
|
2ne0 |
⊢ 2 ≠ 0 |
41 |
40
|
a1i |
⊢ ( 𝐴 ∈ ℂ → 2 ≠ 0 ) |
42 |
8 39 41
|
divcan3d |
⊢ ( 𝐴 ∈ ℂ → ( ( 2 · ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) / 2 ) = ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) |
43 |
3 38 42
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( arcsin ‘ 𝐴 ) ) = ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) |