| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cosatan |
⊢ ( 𝐴 ∈ dom arctan → ( cos ‘ ( arctan ‘ 𝐴 ) ) = ( 1 / ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ) ) |
| 2 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 3 |
|
atandm4 |
⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ≠ 0 ) ) |
| 4 |
3
|
simplbi |
⊢ ( 𝐴 ∈ dom arctan → 𝐴 ∈ ℂ ) |
| 5 |
4
|
sqcld |
⊢ ( 𝐴 ∈ dom arctan → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 6 |
|
addcl |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 7 |
2 5 6
|
sylancr |
⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 8 |
7
|
sqrtcld |
⊢ ( 𝐴 ∈ dom arctan → ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
| 9 |
7
|
sqsqrtd |
⊢ ( 𝐴 ∈ dom arctan → ( ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) = ( 1 + ( 𝐴 ↑ 2 ) ) ) |
| 10 |
3
|
simprbi |
⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( 𝐴 ↑ 2 ) ) ≠ 0 ) |
| 11 |
9 10
|
eqnetrd |
⊢ ( 𝐴 ∈ dom arctan → ( ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) ≠ 0 ) |
| 12 |
|
sqne0 |
⊢ ( ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ∈ ℂ → ( ( ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) ≠ 0 ↔ ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ≠ 0 ) ) |
| 13 |
8 12
|
syl |
⊢ ( 𝐴 ∈ dom arctan → ( ( ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) ≠ 0 ↔ ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ≠ 0 ) ) |
| 14 |
11 13
|
mpbid |
⊢ ( 𝐴 ∈ dom arctan → ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ≠ 0 ) |
| 15 |
8 14
|
recne0d |
⊢ ( 𝐴 ∈ dom arctan → ( 1 / ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ) ≠ 0 ) |
| 16 |
1 15
|
eqnetrd |
⊢ ( 𝐴 ∈ dom arctan → ( cos ‘ ( arctan ‘ 𝐴 ) ) ≠ 0 ) |