Metamath Proof Explorer


Theorem cosbnd2

Description: The cosine of a real number is in the closed interval from -1 to 1. (Contributed by Mario Carneiro, 12-May-2014)

Ref Expression
Assertion cosbnd2 ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) ∈ ( - 1 [,] 1 ) )

Proof

Step Hyp Ref Expression
1 recoscl ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) ∈ ℝ )
2 cosbnd ( 𝐴 ∈ ℝ → ( - 1 ≤ ( cos ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) ≤ 1 ) )
3 2 simpld ( 𝐴 ∈ ℝ → - 1 ≤ ( cos ‘ 𝐴 ) )
4 2 simprd ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) ≤ 1 )
5 neg1rr - 1 ∈ ℝ
6 1re 1 ∈ ℝ
7 5 6 elicc2i ( ( cos ‘ 𝐴 ) ∈ ( - 1 [,] 1 ) ↔ ( ( cos ‘ 𝐴 ) ∈ ℝ ∧ - 1 ≤ ( cos ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) ≤ 1 ) )
8 1 3 4 7 syl3anbrc ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) ∈ ( - 1 [,] 1 ) )