Metamath Proof Explorer


Theorem coscl

Description: Closure of the cosine function with a complex argument. (Contributed by NM, 28-Apr-2005) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Assertion coscl ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 cosf cos : ℂ ⟶ ℂ
2 1 ffvelrni ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ )