Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ( - π (,] π ) ) |
2 |
|
pire |
⊢ π ∈ ℝ |
3 |
2
|
renegcli |
⊢ - π ∈ ℝ |
4 |
3
|
rexri |
⊢ - π ∈ ℝ* |
5 |
|
elioc2 |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → ( 𝐴 ∈ ( - π (,] π ) ↔ ( 𝐴 ∈ ℝ ∧ - π < 𝐴 ∧ 𝐴 ≤ π ) ) ) |
6 |
4 2 5
|
mp2an |
⊢ ( 𝐴 ∈ ( - π (,] π ) ↔ ( 𝐴 ∈ ℝ ∧ - π < 𝐴 ∧ 𝐴 ≤ π ) ) |
7 |
1 6
|
sylib |
⊢ ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → ( 𝐴 ∈ ℝ ∧ - π < 𝐴 ∧ 𝐴 ≤ π ) ) |
8 |
7
|
simp1d |
⊢ ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ℝ ) |
9 |
|
0re |
⊢ 0 ∈ ℝ |
10 |
9
|
a1i |
⊢ ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 0 ∈ ℝ ) |
11 |
8
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → 𝐴 ∈ ℝ ) |
12 |
11
|
recnd |
⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → 𝐴 ∈ ℂ ) |
13 |
8
|
recnd |
⊢ ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ℂ ) |
14 |
13
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → 𝐴 ∈ ℂ ) |
15 |
|
cosneg |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ - 𝐴 ) = ( cos ‘ 𝐴 ) ) |
16 |
14 15
|
syl |
⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → ( cos ‘ - 𝐴 ) = ( cos ‘ 𝐴 ) ) |
17 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → ( cos ‘ 𝐴 ) = 0 ) |
18 |
16 17
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → ( cos ‘ - 𝐴 ) = 0 ) |
19 |
8
|
renegcld |
⊢ ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → - 𝐴 ∈ ℝ ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → - 𝐴 ∈ ℝ ) |
21 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → 𝐴 ≤ 0 ) |
22 |
11
|
le0neg1d |
⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → ( 𝐴 ≤ 0 ↔ 0 ≤ - 𝐴 ) ) |
23 |
21 22
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → 0 ≤ - 𝐴 ) |
24 |
2
|
a1i |
⊢ ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → π ∈ ℝ ) |
25 |
7
|
simp2d |
⊢ ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → - π < 𝐴 ) |
26 |
24 8 25
|
ltnegcon1d |
⊢ ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → - 𝐴 < π ) |
27 |
19 24 26
|
ltled |
⊢ ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → - 𝐴 ≤ π ) |
28 |
27
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → - 𝐴 ≤ π ) |
29 |
9 2
|
elicc2i |
⊢ ( - 𝐴 ∈ ( 0 [,] π ) ↔ ( - 𝐴 ∈ ℝ ∧ 0 ≤ - 𝐴 ∧ - 𝐴 ≤ π ) ) |
30 |
20 23 28 29
|
syl3anbrc |
⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → - 𝐴 ∈ ( 0 [,] π ) ) |
31 |
|
coseq00topi |
⊢ ( - 𝐴 ∈ ( 0 [,] π ) → ( ( cos ‘ - 𝐴 ) = 0 ↔ - 𝐴 = ( π / 2 ) ) ) |
32 |
30 31
|
syl |
⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → ( ( cos ‘ - 𝐴 ) = 0 ↔ - 𝐴 = ( π / 2 ) ) ) |
33 |
18 32
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → - 𝐴 = ( π / 2 ) ) |
34 |
12 33
|
negcon1ad |
⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → - ( π / 2 ) = 𝐴 ) |
35 |
34
|
eqcomd |
⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → 𝐴 = - ( π / 2 ) ) |
36 |
|
halfpire |
⊢ ( π / 2 ) ∈ ℝ |
37 |
36
|
renegcli |
⊢ - ( π / 2 ) ∈ ℝ |
38 |
|
prid2g |
⊢ ( - ( π / 2 ) ∈ ℝ → - ( π / 2 ) ∈ { ( π / 2 ) , - ( π / 2 ) } ) |
39 |
|
eleq1a |
⊢ ( - ( π / 2 ) ∈ { ( π / 2 ) , - ( π / 2 ) } → ( 𝐴 = - ( π / 2 ) → 𝐴 ∈ { ( π / 2 ) , - ( π / 2 ) } ) ) |
40 |
37 38 39
|
mp2b |
⊢ ( 𝐴 = - ( π / 2 ) → 𝐴 ∈ { ( π / 2 ) , - ( π / 2 ) } ) |
41 |
35 40
|
syl |
⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → 𝐴 ∈ { ( π / 2 ) , - ( π / 2 ) } ) |
42 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 0 ≤ 𝐴 ) → ( cos ‘ 𝐴 ) = 0 ) |
43 |
8
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℝ ) |
44 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 0 ≤ 𝐴 ) → 0 ≤ 𝐴 ) |
45 |
7
|
simp3d |
⊢ ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 𝐴 ≤ π ) |
46 |
45
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 0 ≤ 𝐴 ) → 𝐴 ≤ π ) |
47 |
9 2
|
elicc2i |
⊢ ( 𝐴 ∈ ( 0 [,] π ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ π ) ) |
48 |
43 44 46 47
|
syl3anbrc |
⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ( 0 [,] π ) ) |
49 |
|
coseq00topi |
⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( ( cos ‘ 𝐴 ) = 0 ↔ 𝐴 = ( π / 2 ) ) ) |
50 |
48 49
|
syl |
⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 0 ≤ 𝐴 ) → ( ( cos ‘ 𝐴 ) = 0 ↔ 𝐴 = ( π / 2 ) ) ) |
51 |
42 50
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 0 ≤ 𝐴 ) → 𝐴 = ( π / 2 ) ) |
52 |
|
prid1g |
⊢ ( ( π / 2 ) ∈ ℝ → ( π / 2 ) ∈ { ( π / 2 ) , - ( π / 2 ) } ) |
53 |
|
eleq1a |
⊢ ( ( π / 2 ) ∈ { ( π / 2 ) , - ( π / 2 ) } → ( 𝐴 = ( π / 2 ) → 𝐴 ∈ { ( π / 2 ) , - ( π / 2 ) } ) ) |
54 |
36 52 53
|
mp2b |
⊢ ( 𝐴 = ( π / 2 ) → 𝐴 ∈ { ( π / 2 ) , - ( π / 2 ) } ) |
55 |
51 54
|
syl |
⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ { ( π / 2 ) , - ( π / 2 ) } ) |
56 |
8 10 41 55
|
lecasei |
⊢ ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 𝐴 ∈ { ( π / 2 ) , - ( π / 2 ) } ) |
57 |
|
elpri |
⊢ ( 𝐴 ∈ { ( π / 2 ) , - ( π / 2 ) } → ( 𝐴 = ( π / 2 ) ∨ 𝐴 = - ( π / 2 ) ) ) |
58 |
|
fveq2 |
⊢ ( 𝐴 = ( π / 2 ) → ( cos ‘ 𝐴 ) = ( cos ‘ ( π / 2 ) ) ) |
59 |
|
coshalfpi |
⊢ ( cos ‘ ( π / 2 ) ) = 0 |
60 |
58 59
|
eqtrdi |
⊢ ( 𝐴 = ( π / 2 ) → ( cos ‘ 𝐴 ) = 0 ) |
61 |
|
fveq2 |
⊢ ( 𝐴 = - ( π / 2 ) → ( cos ‘ 𝐴 ) = ( cos ‘ - ( π / 2 ) ) ) |
62 |
|
cosneghalfpi |
⊢ ( cos ‘ - ( π / 2 ) ) = 0 |
63 |
61 62
|
eqtrdi |
⊢ ( 𝐴 = - ( π / 2 ) → ( cos ‘ 𝐴 ) = 0 ) |
64 |
60 63
|
jaoi |
⊢ ( ( 𝐴 = ( π / 2 ) ∨ 𝐴 = - ( π / 2 ) ) → ( cos ‘ 𝐴 ) = 0 ) |
65 |
57 64
|
syl |
⊢ ( 𝐴 ∈ { ( π / 2 ) , - ( π / 2 ) } → ( cos ‘ 𝐴 ) = 0 ) |
66 |
65
|
adantl |
⊢ ( ( 𝐴 ∈ ( - π (,] π ) ∧ 𝐴 ∈ { ( π / 2 ) , - ( π / 2 ) } ) → ( cos ‘ 𝐴 ) = 0 ) |
67 |
56 66
|
impbida |
⊢ ( 𝐴 ∈ ( - π (,] π ) → ( ( cos ‘ 𝐴 ) = 0 ↔ 𝐴 ∈ { ( π / 2 ) , - ( π / 2 ) } ) ) |