| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 2 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 3 |  | divcan2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 )  →  ( 2  ·  ( 𝐴  /  2 ) )  =  𝐴 ) | 
						
							| 4 | 1 2 3 | mp3an23 | ⊢ ( 𝐴  ∈  ℂ  →  ( 2  ·  ( 𝐴  /  2 ) )  =  𝐴 ) | 
						
							| 5 | 4 | fveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ ( 2  ·  ( 𝐴  /  2 ) ) )  =  ( cos ‘ 𝐴 ) ) | 
						
							| 6 |  | halfcl | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  /  2 )  ∈  ℂ ) | 
						
							| 7 |  | cos2tsin | ⊢ ( ( 𝐴  /  2 )  ∈  ℂ  →  ( cos ‘ ( 2  ·  ( 𝐴  /  2 ) ) )  =  ( 1  −  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ ( 2  ·  ( 𝐴  /  2 ) ) )  =  ( 1  −  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) ) ) | 
						
							| 9 | 5 8 | eqtr3d | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ 𝐴 )  =  ( 1  −  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) ) ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( cos ‘ 𝐴 )  =  1  ↔  ( 1  −  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) )  =  1 ) ) | 
						
							| 11 | 6 | sincld | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ ( 𝐴  /  2 ) )  ∈  ℂ ) | 
						
							| 12 | 11 | sqcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 13 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ∈  ℂ )  →  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  ∈  ℂ ) | 
						
							| 14 | 1 12 13 | sylancr | ⊢ ( 𝐴  ∈  ℂ  →  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  ∈  ℂ ) | 
						
							| 15 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 16 |  | subsub23 | ⊢ ( ( 1  ∈  ℂ  ∧  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 1  −  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) )  =  1  ↔  ( 1  −  1 )  =  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) ) ) | 
						
							| 17 | 15 15 16 | mp3an13 | ⊢ ( ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  ∈  ℂ  →  ( ( 1  −  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) )  =  1  ↔  ( 1  −  1 )  =  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) ) ) | 
						
							| 18 | 14 17 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 1  −  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) )  =  1  ↔  ( 1  −  1 )  =  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) ) ) | 
						
							| 19 |  | eqcom | ⊢ ( ( 1  −  1 )  =  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  ↔  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  =  ( 1  −  1 ) ) | 
						
							| 20 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 21 | 20 | eqeq2i | ⊢ ( ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  =  ( 1  −  1 )  ↔  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  =  0 ) | 
						
							| 22 | 19 21 | bitri | ⊢ ( ( 1  −  1 )  =  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  ↔  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  =  0 ) | 
						
							| 23 | 18 22 | bitrdi | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 1  −  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) )  =  1  ↔  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  =  0 ) ) | 
						
							| 24 | 10 23 | bitrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( cos ‘ 𝐴 )  =  1  ↔  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  =  0 ) ) | 
						
							| 25 |  | mul0or | ⊢ ( ( 2  ∈  ℂ  ∧  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ∈  ℂ )  →  ( ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  =  0  ↔  ( 2  =  0  ∨  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  =  0 ) ) ) | 
						
							| 26 | 1 12 25 | sylancr | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  =  0  ↔  ( 2  =  0  ∨  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  =  0 ) ) ) | 
						
							| 27 | 2 | neii | ⊢ ¬  2  =  0 | 
						
							| 28 |  | biorf | ⊢ ( ¬  2  =  0  →  ( ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  =  0  ↔  ( 2  =  0  ∨  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  =  0 ) ) ) | 
						
							| 29 | 27 28 | ax-mp | ⊢ ( ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  =  0  ↔  ( 2  =  0  ∨  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  =  0 ) ) | 
						
							| 30 | 26 29 | bitr4di | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  =  0  ↔  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  =  0 ) ) | 
						
							| 31 |  | sqeq0 | ⊢ ( ( sin ‘ ( 𝐴  /  2 ) )  ∈  ℂ  →  ( ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  =  0  ↔  ( sin ‘ ( 𝐴  /  2 ) )  =  0 ) ) | 
						
							| 32 | 11 31 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  =  0  ↔  ( sin ‘ ( 𝐴  /  2 ) )  =  0 ) ) | 
						
							| 33 | 24 30 32 | 3bitrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( cos ‘ 𝐴 )  =  1  ↔  ( sin ‘ ( 𝐴  /  2 ) )  =  0 ) ) | 
						
							| 34 |  | sineq0 | ⊢ ( ( 𝐴  /  2 )  ∈  ℂ  →  ( ( sin ‘ ( 𝐴  /  2 ) )  =  0  ↔  ( ( 𝐴  /  2 )  /  π )  ∈  ℤ ) ) | 
						
							| 35 | 6 34 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sin ‘ ( 𝐴  /  2 ) )  =  0  ↔  ( ( 𝐴  /  2 )  /  π )  ∈  ℤ ) ) | 
						
							| 36 | 1 2 | pm3.2i | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 37 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 38 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 39 |  | pipos | ⊢ 0  <  π | 
						
							| 40 | 38 39 | gt0ne0ii | ⊢ π  ≠  0 | 
						
							| 41 | 37 40 | pm3.2i | ⊢ ( π  ∈  ℂ  ∧  π  ≠  0 ) | 
						
							| 42 |  | divdiv1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 )  ∧  ( π  ∈  ℂ  ∧  π  ≠  0 ) )  →  ( ( 𝐴  /  2 )  /  π )  =  ( 𝐴  /  ( 2  ·  π ) ) ) | 
						
							| 43 | 36 41 42 | mp3an23 | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 𝐴  /  2 )  /  π )  =  ( 𝐴  /  ( 2  ·  π ) ) ) | 
						
							| 44 | 43 | eleq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( 𝐴  /  2 )  /  π )  ∈  ℤ  ↔  ( 𝐴  /  ( 2  ·  π ) )  ∈  ℤ ) ) | 
						
							| 45 | 33 35 44 | 3bitrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( cos ‘ 𝐴 )  =  1  ↔  ( 𝐴  /  ( 2  ·  π ) )  ∈  ℤ ) ) |