Step |
Hyp |
Ref |
Expression |
1 |
|
df-cos |
⊢ cos = ( 𝑥 ∈ ℂ ↦ ( ( ( exp ‘ ( i · 𝑥 ) ) + ( exp ‘ ( - i · 𝑥 ) ) ) / 2 ) ) |
2 |
|
ax-icn |
⊢ i ∈ ℂ |
3 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( i · 𝑥 ) ∈ ℂ ) |
4 |
2 3
|
mpan |
⊢ ( 𝑥 ∈ ℂ → ( i · 𝑥 ) ∈ ℂ ) |
5 |
|
efcl |
⊢ ( ( i · 𝑥 ) ∈ ℂ → ( exp ‘ ( i · 𝑥 ) ) ∈ ℂ ) |
6 |
4 5
|
syl |
⊢ ( 𝑥 ∈ ℂ → ( exp ‘ ( i · 𝑥 ) ) ∈ ℂ ) |
7 |
|
negicn |
⊢ - i ∈ ℂ |
8 |
|
mulcl |
⊢ ( ( - i ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( - i · 𝑥 ) ∈ ℂ ) |
9 |
7 8
|
mpan |
⊢ ( 𝑥 ∈ ℂ → ( - i · 𝑥 ) ∈ ℂ ) |
10 |
|
efcl |
⊢ ( ( - i · 𝑥 ) ∈ ℂ → ( exp ‘ ( - i · 𝑥 ) ) ∈ ℂ ) |
11 |
9 10
|
syl |
⊢ ( 𝑥 ∈ ℂ → ( exp ‘ ( - i · 𝑥 ) ) ∈ ℂ ) |
12 |
6 11
|
addcld |
⊢ ( 𝑥 ∈ ℂ → ( ( exp ‘ ( i · 𝑥 ) ) + ( exp ‘ ( - i · 𝑥 ) ) ) ∈ ℂ ) |
13 |
12
|
halfcld |
⊢ ( 𝑥 ∈ ℂ → ( ( ( exp ‘ ( i · 𝑥 ) ) + ( exp ‘ ( - i · 𝑥 ) ) ) / 2 ) ∈ ℂ ) |
14 |
1 13
|
fmpti |
⊢ cos : ℂ ⟶ ℂ |