| Step | Hyp | Ref | Expression | 
						
							| 1 |  | halfpire | ⊢ ( π  /  2 )  ∈  ℝ | 
						
							| 2 | 1 | recni | ⊢ ( π  /  2 )  ∈  ℂ | 
						
							| 3 |  | cossub | ⊢ ( ( ( π  /  2 )  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( cos ‘ ( ( π  /  2 )  −  𝐴 ) )  =  ( ( ( cos ‘ ( π  /  2 ) )  ·  ( cos ‘ 𝐴 ) )  +  ( ( sin ‘ ( π  /  2 ) )  ·  ( sin ‘ 𝐴 ) ) ) ) | 
						
							| 4 | 2 3 | mpan | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ ( ( π  /  2 )  −  𝐴 ) )  =  ( ( ( cos ‘ ( π  /  2 ) )  ·  ( cos ‘ 𝐴 ) )  +  ( ( sin ‘ ( π  /  2 ) )  ·  ( sin ‘ 𝐴 ) ) ) ) | 
						
							| 5 |  | coshalfpi | ⊢ ( cos ‘ ( π  /  2 ) )  =  0 | 
						
							| 6 | 5 | oveq1i | ⊢ ( ( cos ‘ ( π  /  2 ) )  ·  ( cos ‘ 𝐴 ) )  =  ( 0  ·  ( cos ‘ 𝐴 ) ) | 
						
							| 7 |  | coscl | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 8 | 7 | mul02d | ⊢ ( 𝐴  ∈  ℂ  →  ( 0  ·  ( cos ‘ 𝐴 ) )  =  0 ) | 
						
							| 9 | 6 8 | eqtrid | ⊢ ( 𝐴  ∈  ℂ  →  ( ( cos ‘ ( π  /  2 ) )  ·  ( cos ‘ 𝐴 ) )  =  0 ) | 
						
							| 10 |  | sinhalfpi | ⊢ ( sin ‘ ( π  /  2 ) )  =  1 | 
						
							| 11 | 10 | oveq1i | ⊢ ( ( sin ‘ ( π  /  2 ) )  ·  ( sin ‘ 𝐴 ) )  =  ( 1  ·  ( sin ‘ 𝐴 ) ) | 
						
							| 12 |  | sincl | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 13 | 12 | mullidd | ⊢ ( 𝐴  ∈  ℂ  →  ( 1  ·  ( sin ‘ 𝐴 ) )  =  ( sin ‘ 𝐴 ) ) | 
						
							| 14 | 11 13 | eqtrid | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sin ‘ ( π  /  2 ) )  ·  ( sin ‘ 𝐴 ) )  =  ( sin ‘ 𝐴 ) ) | 
						
							| 15 | 9 14 | oveq12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( cos ‘ ( π  /  2 ) )  ·  ( cos ‘ 𝐴 ) )  +  ( ( sin ‘ ( π  /  2 ) )  ·  ( sin ‘ 𝐴 ) ) )  =  ( 0  +  ( sin ‘ 𝐴 ) ) ) | 
						
							| 16 | 12 | addlidd | ⊢ ( 𝐴  ∈  ℂ  →  ( 0  +  ( sin ‘ 𝐴 ) )  =  ( sin ‘ 𝐴 ) ) | 
						
							| 17 | 4 15 16 | 3eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ ( ( π  /  2 )  −  𝐴 ) )  =  ( sin ‘ 𝐴 ) ) |