Metamath Proof Explorer


Theorem coshalfpim

Description: The cosine of _pi / 2 minus a number. (Contributed by Paul Chapman, 24-Jan-2008)

Ref Expression
Assertion coshalfpim ( 𝐴 ∈ ℂ → ( cos ‘ ( ( π / 2 ) − 𝐴 ) ) = ( sin ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 halfpire ( π / 2 ) ∈ ℝ
2 1 recni ( π / 2 ) ∈ ℂ
3 cossub ( ( ( π / 2 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( cos ‘ ( ( π / 2 ) − 𝐴 ) ) = ( ( ( cos ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) + ( ( sin ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) ) )
4 2 3 mpan ( 𝐴 ∈ ℂ → ( cos ‘ ( ( π / 2 ) − 𝐴 ) ) = ( ( ( cos ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) + ( ( sin ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) ) )
5 coshalfpi ( cos ‘ ( π / 2 ) ) = 0
6 5 oveq1i ( ( cos ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) = ( 0 · ( cos ‘ 𝐴 ) )
7 coscl ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ )
8 7 mul02d ( 𝐴 ∈ ℂ → ( 0 · ( cos ‘ 𝐴 ) ) = 0 )
9 6 8 syl5eq ( 𝐴 ∈ ℂ → ( ( cos ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) = 0 )
10 sinhalfpi ( sin ‘ ( π / 2 ) ) = 1
11 10 oveq1i ( ( sin ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) = ( 1 · ( sin ‘ 𝐴 ) )
12 sincl ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ )
13 12 mulid2d ( 𝐴 ∈ ℂ → ( 1 · ( sin ‘ 𝐴 ) ) = ( sin ‘ 𝐴 ) )
14 11 13 syl5eq ( 𝐴 ∈ ℂ → ( ( sin ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) = ( sin ‘ 𝐴 ) )
15 9 14 oveq12d ( 𝐴 ∈ ℂ → ( ( ( cos ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) + ( ( sin ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) ) = ( 0 + ( sin ‘ 𝐴 ) ) )
16 12 addid2d ( 𝐴 ∈ ℂ → ( 0 + ( sin ‘ 𝐴 ) ) = ( sin ‘ 𝐴 ) )
17 4 15 16 3eqtrd ( 𝐴 ∈ ℂ → ( cos ‘ ( ( π / 2 ) − 𝐴 ) ) = ( sin ‘ 𝐴 ) )