| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 2 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 3 | 1 2 | mpan | ⊢ ( 𝐴  ∈  ℂ  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 4 |  | cosval | ⊢ ( ( i  ·  𝐴 )  ∈  ℂ  →  ( cos ‘ ( i  ·  𝐴 ) )  =  ( ( ( exp ‘ ( i  ·  ( i  ·  𝐴 ) ) )  +  ( exp ‘ ( - i  ·  ( i  ·  𝐴 ) ) ) )  /  2 ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ ( i  ·  𝐴 ) )  =  ( ( ( exp ‘ ( i  ·  ( i  ·  𝐴 ) ) )  +  ( exp ‘ ( - i  ·  ( i  ·  𝐴 ) ) ) )  /  2 ) ) | 
						
							| 6 |  | negcl | ⊢ ( 𝐴  ∈  ℂ  →  - 𝐴  ∈  ℂ ) | 
						
							| 7 |  | efcl | ⊢ ( - 𝐴  ∈  ℂ  →  ( exp ‘ - 𝐴 )  ∈  ℂ ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( exp ‘ - 𝐴 )  ∈  ℂ ) | 
						
							| 9 |  | efcl | ⊢ ( 𝐴  ∈  ℂ  →  ( exp ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 10 |  | ixi | ⊢ ( i  ·  i )  =  - 1 | 
						
							| 11 | 10 | oveq1i | ⊢ ( ( i  ·  i )  ·  𝐴 )  =  ( - 1  ·  𝐴 ) | 
						
							| 12 |  | mulass | ⊢ ( ( i  ∈  ℂ  ∧  i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( i  ·  i )  ·  𝐴 )  =  ( i  ·  ( i  ·  𝐴 ) ) ) | 
						
							| 13 | 1 1 12 | mp3an12 | ⊢ ( 𝐴  ∈  ℂ  →  ( ( i  ·  i )  ·  𝐴 )  =  ( i  ·  ( i  ·  𝐴 ) ) ) | 
						
							| 14 |  | mulm1 | ⊢ ( 𝐴  ∈  ℂ  →  ( - 1  ·  𝐴 )  =  - 𝐴 ) | 
						
							| 15 | 11 13 14 | 3eqtr3a | ⊢ ( 𝐴  ∈  ℂ  →  ( i  ·  ( i  ·  𝐴 ) )  =  - 𝐴 ) | 
						
							| 16 | 15 | fveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( exp ‘ ( i  ·  ( i  ·  𝐴 ) ) )  =  ( exp ‘ - 𝐴 ) ) | 
						
							| 17 | 1 1 | mulneg1i | ⊢ ( - i  ·  i )  =  - ( i  ·  i ) | 
						
							| 18 | 10 | negeqi | ⊢ - ( i  ·  i )  =  - - 1 | 
						
							| 19 |  | negneg1e1 | ⊢ - - 1  =  1 | 
						
							| 20 | 17 18 19 | 3eqtri | ⊢ ( - i  ·  i )  =  1 | 
						
							| 21 | 20 | oveq1i | ⊢ ( ( - i  ·  i )  ·  𝐴 )  =  ( 1  ·  𝐴 ) | 
						
							| 22 |  | negicn | ⊢ - i  ∈  ℂ | 
						
							| 23 |  | mulass | ⊢ ( ( - i  ∈  ℂ  ∧  i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( - i  ·  i )  ·  𝐴 )  =  ( - i  ·  ( i  ·  𝐴 ) ) ) | 
						
							| 24 | 22 1 23 | mp3an12 | ⊢ ( 𝐴  ∈  ℂ  →  ( ( - i  ·  i )  ·  𝐴 )  =  ( - i  ·  ( i  ·  𝐴 ) ) ) | 
						
							| 25 |  | mullid | ⊢ ( 𝐴  ∈  ℂ  →  ( 1  ·  𝐴 )  =  𝐴 ) | 
						
							| 26 | 21 24 25 | 3eqtr3a | ⊢ ( 𝐴  ∈  ℂ  →  ( - i  ·  ( i  ·  𝐴 ) )  =  𝐴 ) | 
						
							| 27 | 26 | fveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( exp ‘ ( - i  ·  ( i  ·  𝐴 ) ) )  =  ( exp ‘ 𝐴 ) ) | 
						
							| 28 | 16 27 | oveq12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( exp ‘ ( i  ·  ( i  ·  𝐴 ) ) )  +  ( exp ‘ ( - i  ·  ( i  ·  𝐴 ) ) ) )  =  ( ( exp ‘ - 𝐴 )  +  ( exp ‘ 𝐴 ) ) ) | 
						
							| 29 | 8 9 28 | comraddd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( exp ‘ ( i  ·  ( i  ·  𝐴 ) ) )  +  ( exp ‘ ( - i  ·  ( i  ·  𝐴 ) ) ) )  =  ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) ) ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( exp ‘ ( i  ·  ( i  ·  𝐴 ) ) )  +  ( exp ‘ ( - i  ·  ( i  ·  𝐴 ) ) ) )  /  2 )  =  ( ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  /  2 ) ) | 
						
							| 31 | 5 30 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ ( i  ·  𝐴 ) )  =  ( ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  /  2 ) ) |