| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-icn |
⊢ i ∈ ℂ |
| 2 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
| 3 |
1 2
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
| 4 |
|
cosval |
⊢ ( ( i · 𝐴 ) ∈ ℂ → ( cos ‘ ( i · 𝐴 ) ) = ( ( ( exp ‘ ( i · ( i · 𝐴 ) ) ) + ( exp ‘ ( - i · ( i · 𝐴 ) ) ) ) / 2 ) ) |
| 5 |
3 4
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( i · 𝐴 ) ) = ( ( ( exp ‘ ( i · ( i · 𝐴 ) ) ) + ( exp ‘ ( - i · ( i · 𝐴 ) ) ) ) / 2 ) ) |
| 6 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
| 7 |
|
efcl |
⊢ ( - 𝐴 ∈ ℂ → ( exp ‘ - 𝐴 ) ∈ ℂ ) |
| 8 |
6 7
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ - 𝐴 ) ∈ ℂ ) |
| 9 |
|
efcl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ∈ ℂ ) |
| 10 |
|
ixi |
⊢ ( i · i ) = - 1 |
| 11 |
10
|
oveq1i |
⊢ ( ( i · i ) · 𝐴 ) = ( - 1 · 𝐴 ) |
| 12 |
|
mulass |
⊢ ( ( i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( i · i ) · 𝐴 ) = ( i · ( i · 𝐴 ) ) ) |
| 13 |
1 1 12
|
mp3an12 |
⊢ ( 𝐴 ∈ ℂ → ( ( i · i ) · 𝐴 ) = ( i · ( i · 𝐴 ) ) ) |
| 14 |
|
mulm1 |
⊢ ( 𝐴 ∈ ℂ → ( - 1 · 𝐴 ) = - 𝐴 ) |
| 15 |
11 13 14
|
3eqtr3a |
⊢ ( 𝐴 ∈ ℂ → ( i · ( i · 𝐴 ) ) = - 𝐴 ) |
| 16 |
15
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( i · 𝐴 ) ) ) = ( exp ‘ - 𝐴 ) ) |
| 17 |
1 1
|
mulneg1i |
⊢ ( - i · i ) = - ( i · i ) |
| 18 |
10
|
negeqi |
⊢ - ( i · i ) = - - 1 |
| 19 |
|
negneg1e1 |
⊢ - - 1 = 1 |
| 20 |
17 18 19
|
3eqtri |
⊢ ( - i · i ) = 1 |
| 21 |
20
|
oveq1i |
⊢ ( ( - i · i ) · 𝐴 ) = ( 1 · 𝐴 ) |
| 22 |
|
negicn |
⊢ - i ∈ ℂ |
| 23 |
|
mulass |
⊢ ( ( - i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( - i · i ) · 𝐴 ) = ( - i · ( i · 𝐴 ) ) ) |
| 24 |
22 1 23
|
mp3an12 |
⊢ ( 𝐴 ∈ ℂ → ( ( - i · i ) · 𝐴 ) = ( - i · ( i · 𝐴 ) ) ) |
| 25 |
|
mullid |
⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) |
| 26 |
21 24 25
|
3eqtr3a |
⊢ ( 𝐴 ∈ ℂ → ( - i · ( i · 𝐴 ) ) = 𝐴 ) |
| 27 |
26
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · ( i · 𝐴 ) ) ) = ( exp ‘ 𝐴 ) ) |
| 28 |
16 27
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · ( i · 𝐴 ) ) ) + ( exp ‘ ( - i · ( i · 𝐴 ) ) ) ) = ( ( exp ‘ - 𝐴 ) + ( exp ‘ 𝐴 ) ) ) |
| 29 |
8 9 28
|
comraddd |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · ( i · 𝐴 ) ) ) + ( exp ‘ ( - i · ( i · 𝐴 ) ) ) ) = ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) |
| 30 |
29
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( i · ( i · 𝐴 ) ) ) + ( exp ‘ ( - i · ( i · 𝐴 ) ) ) ) / 2 ) = ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) |
| 31 |
5 30
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( i · 𝐴 ) ) = ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) |