Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝐾 ∈ ℤ ∧ 2 ∥ 𝐾 ) → 2 ∥ 𝐾 ) |
2 |
|
2z |
⊢ 2 ∈ ℤ |
3 |
|
simpl |
⊢ ( ( 𝐾 ∈ ℤ ∧ 2 ∥ 𝐾 ) → 𝐾 ∈ ℤ ) |
4 |
|
divides |
⊢ ( ( 2 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 2 ∥ 𝐾 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 2 ) = 𝐾 ) ) |
5 |
2 3 4
|
sylancr |
⊢ ( ( 𝐾 ∈ ℤ ∧ 2 ∥ 𝐾 ) → ( 2 ∥ 𝐾 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 2 ) = 𝐾 ) ) |
6 |
1 5
|
mpbid |
⊢ ( ( 𝐾 ∈ ℤ ∧ 2 ∥ 𝐾 ) → ∃ 𝑛 ∈ ℤ ( 𝑛 · 2 ) = 𝐾 ) |
7 |
|
zcn |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ ) |
8 |
|
negcl |
⊢ ( 𝑛 ∈ ℂ → - 𝑛 ∈ ℂ ) |
9 |
|
2cn |
⊢ 2 ∈ ℂ |
10 |
|
picn |
⊢ π ∈ ℂ |
11 |
9 10
|
mulcli |
⊢ ( 2 · π ) ∈ ℂ |
12 |
11
|
a1i |
⊢ ( 𝑛 ∈ ℂ → ( 2 · π ) ∈ ℂ ) |
13 |
8 12
|
mulcld |
⊢ ( 𝑛 ∈ ℂ → ( - 𝑛 · ( 2 · π ) ) ∈ ℂ ) |
14 |
13
|
addid2d |
⊢ ( 𝑛 ∈ ℂ → ( 0 + ( - 𝑛 · ( 2 · π ) ) ) = ( - 𝑛 · ( 2 · π ) ) ) |
15 |
|
2cnd |
⊢ ( 𝑛 ∈ ℂ → 2 ∈ ℂ ) |
16 |
10
|
a1i |
⊢ ( 𝑛 ∈ ℂ → π ∈ ℂ ) |
17 |
8 15 16
|
mulassd |
⊢ ( 𝑛 ∈ ℂ → ( ( - 𝑛 · 2 ) · π ) = ( - 𝑛 · ( 2 · π ) ) ) |
18 |
17
|
eqcomd |
⊢ ( 𝑛 ∈ ℂ → ( - 𝑛 · ( 2 · π ) ) = ( ( - 𝑛 · 2 ) · π ) ) |
19 |
|
id |
⊢ ( 𝑛 ∈ ℂ → 𝑛 ∈ ℂ ) |
20 |
19 15
|
mulneg1d |
⊢ ( 𝑛 ∈ ℂ → ( - 𝑛 · 2 ) = - ( 𝑛 · 2 ) ) |
21 |
20
|
oveq1d |
⊢ ( 𝑛 ∈ ℂ → ( ( - 𝑛 · 2 ) · π ) = ( - ( 𝑛 · 2 ) · π ) ) |
22 |
14 18 21
|
3eqtrd |
⊢ ( 𝑛 ∈ ℂ → ( 0 + ( - 𝑛 · ( 2 · π ) ) ) = ( - ( 𝑛 · 2 ) · π ) ) |
23 |
7 22
|
syl |
⊢ ( 𝑛 ∈ ℤ → ( 0 + ( - 𝑛 · ( 2 · π ) ) ) = ( - ( 𝑛 · 2 ) · π ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( 𝑛 · 2 ) = 𝐾 ) → ( 0 + ( - 𝑛 · ( 2 · π ) ) ) = ( - ( 𝑛 · 2 ) · π ) ) |
25 |
19 15
|
mulcld |
⊢ ( 𝑛 ∈ ℂ → ( 𝑛 · 2 ) ∈ ℂ ) |
26 |
|
mulneg12 |
⊢ ( ( ( 𝑛 · 2 ) ∈ ℂ ∧ π ∈ ℂ ) → ( - ( 𝑛 · 2 ) · π ) = ( ( 𝑛 · 2 ) · - π ) ) |
27 |
25 16 26
|
syl2anc |
⊢ ( 𝑛 ∈ ℂ → ( - ( 𝑛 · 2 ) · π ) = ( ( 𝑛 · 2 ) · - π ) ) |
28 |
7 27
|
syl |
⊢ ( 𝑛 ∈ ℤ → ( - ( 𝑛 · 2 ) · π ) = ( ( 𝑛 · 2 ) · - π ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( 𝑛 · 2 ) = 𝐾 ) → ( - ( 𝑛 · 2 ) · π ) = ( ( 𝑛 · 2 ) · - π ) ) |
30 |
|
oveq1 |
⊢ ( ( 𝑛 · 2 ) = 𝐾 → ( ( 𝑛 · 2 ) · - π ) = ( 𝐾 · - π ) ) |
31 |
30
|
adantl |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( 𝑛 · 2 ) = 𝐾 ) → ( ( 𝑛 · 2 ) · - π ) = ( 𝐾 · - π ) ) |
32 |
24 29 31
|
3eqtrrd |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( 𝑛 · 2 ) = 𝐾 ) → ( 𝐾 · - π ) = ( 0 + ( - 𝑛 · ( 2 · π ) ) ) ) |
33 |
32
|
fveq2d |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( 𝑛 · 2 ) = 𝐾 ) → ( cos ‘ ( 𝐾 · - π ) ) = ( cos ‘ ( 0 + ( - 𝑛 · ( 2 · π ) ) ) ) ) |
34 |
33
|
3adant1 |
⊢ ( ( 2 ∥ 𝐾 ∧ 𝑛 ∈ ℤ ∧ ( 𝑛 · 2 ) = 𝐾 ) → ( cos ‘ ( 𝐾 · - π ) ) = ( cos ‘ ( 0 + ( - 𝑛 · ( 2 · π ) ) ) ) ) |
35 |
|
0cnd |
⊢ ( 𝑛 ∈ ℤ → 0 ∈ ℂ ) |
36 |
|
znegcl |
⊢ ( 𝑛 ∈ ℤ → - 𝑛 ∈ ℤ ) |
37 |
|
cosper |
⊢ ( ( 0 ∈ ℂ ∧ - 𝑛 ∈ ℤ ) → ( cos ‘ ( 0 + ( - 𝑛 · ( 2 · π ) ) ) ) = ( cos ‘ 0 ) ) |
38 |
35 36 37
|
syl2anc |
⊢ ( 𝑛 ∈ ℤ → ( cos ‘ ( 0 + ( - 𝑛 · ( 2 · π ) ) ) ) = ( cos ‘ 0 ) ) |
39 |
38
|
3ad2ant2 |
⊢ ( ( 2 ∥ 𝐾 ∧ 𝑛 ∈ ℤ ∧ ( 𝑛 · 2 ) = 𝐾 ) → ( cos ‘ ( 0 + ( - 𝑛 · ( 2 · π ) ) ) ) = ( cos ‘ 0 ) ) |
40 |
|
cos0 |
⊢ ( cos ‘ 0 ) = 1 |
41 |
|
iftrue |
⊢ ( 2 ∥ 𝐾 → if ( 2 ∥ 𝐾 , 1 , - 1 ) = 1 ) |
42 |
40 41
|
eqtr4id |
⊢ ( 2 ∥ 𝐾 → ( cos ‘ 0 ) = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) |
43 |
42
|
3ad2ant1 |
⊢ ( ( 2 ∥ 𝐾 ∧ 𝑛 ∈ ℤ ∧ ( 𝑛 · 2 ) = 𝐾 ) → ( cos ‘ 0 ) = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) |
44 |
34 39 43
|
3eqtrd |
⊢ ( ( 2 ∥ 𝐾 ∧ 𝑛 ∈ ℤ ∧ ( 𝑛 · 2 ) = 𝐾 ) → ( cos ‘ ( 𝐾 · - π ) ) = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) |
45 |
44
|
3exp |
⊢ ( 2 ∥ 𝐾 → ( 𝑛 ∈ ℤ → ( ( 𝑛 · 2 ) = 𝐾 → ( cos ‘ ( 𝐾 · - π ) ) = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) ) ) |
46 |
45
|
adantl |
⊢ ( ( 𝐾 ∈ ℤ ∧ 2 ∥ 𝐾 ) → ( 𝑛 ∈ ℤ → ( ( 𝑛 · 2 ) = 𝐾 → ( cos ‘ ( 𝐾 · - π ) ) = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) ) ) |
47 |
46
|
rexlimdv |
⊢ ( ( 𝐾 ∈ ℤ ∧ 2 ∥ 𝐾 ) → ( ∃ 𝑛 ∈ ℤ ( 𝑛 · 2 ) = 𝐾 → ( cos ‘ ( 𝐾 · - π ) ) = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) ) |
48 |
6 47
|
mpd |
⊢ ( ( 𝐾 ∈ ℤ ∧ 2 ∥ 𝐾 ) → ( cos ‘ ( 𝐾 · - π ) ) = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) |
49 |
|
odd2np1 |
⊢ ( 𝐾 ∈ ℤ → ( ¬ 2 ∥ 𝐾 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝐾 ) ) |
50 |
49
|
biimpa |
⊢ ( ( 𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾 ) → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝐾 ) |
51 |
|
oveq1 |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝐾 → ( ( ( 2 · 𝑛 ) + 1 ) · - π ) = ( 𝐾 · - π ) ) |
52 |
51
|
eqcomd |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝐾 → ( 𝐾 · - π ) = ( ( ( 2 · 𝑛 ) + 1 ) · - π ) ) |
53 |
52
|
adantl |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝐾 ) → ( 𝐾 · - π ) = ( ( ( 2 · 𝑛 ) + 1 ) · - π ) ) |
54 |
15 19
|
mulcld |
⊢ ( 𝑛 ∈ ℂ → ( 2 · 𝑛 ) ∈ ℂ ) |
55 |
|
1cnd |
⊢ ( 𝑛 ∈ ℂ → 1 ∈ ℂ ) |
56 |
|
negpicn |
⊢ - π ∈ ℂ |
57 |
56
|
a1i |
⊢ ( 𝑛 ∈ ℂ → - π ∈ ℂ ) |
58 |
54 55 57
|
adddird |
⊢ ( 𝑛 ∈ ℂ → ( ( ( 2 · 𝑛 ) + 1 ) · - π ) = ( ( ( 2 · 𝑛 ) · - π ) + ( 1 · - π ) ) ) |
59 |
7 58
|
syl |
⊢ ( 𝑛 ∈ ℤ → ( ( ( 2 · 𝑛 ) + 1 ) · - π ) = ( ( ( 2 · 𝑛 ) · - π ) + ( 1 · - π ) ) ) |
60 |
59
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝐾 ) → ( ( ( 2 · 𝑛 ) + 1 ) · - π ) = ( ( ( 2 · 𝑛 ) · - π ) + ( 1 · - π ) ) ) |
61 |
|
mulneg12 |
⊢ ( ( ( 2 · 𝑛 ) ∈ ℂ ∧ π ∈ ℂ ) → ( - ( 2 · 𝑛 ) · π ) = ( ( 2 · 𝑛 ) · - π ) ) |
62 |
54 16 61
|
syl2anc |
⊢ ( 𝑛 ∈ ℂ → ( - ( 2 · 𝑛 ) · π ) = ( ( 2 · 𝑛 ) · - π ) ) |
63 |
62
|
eqcomd |
⊢ ( 𝑛 ∈ ℂ → ( ( 2 · 𝑛 ) · - π ) = ( - ( 2 · 𝑛 ) · π ) ) |
64 |
15 19
|
mulneg2d |
⊢ ( 𝑛 ∈ ℂ → ( 2 · - 𝑛 ) = - ( 2 · 𝑛 ) ) |
65 |
15 8
|
mulcomd |
⊢ ( 𝑛 ∈ ℂ → ( 2 · - 𝑛 ) = ( - 𝑛 · 2 ) ) |
66 |
64 65
|
eqtr3d |
⊢ ( 𝑛 ∈ ℂ → - ( 2 · 𝑛 ) = ( - 𝑛 · 2 ) ) |
67 |
66
|
oveq1d |
⊢ ( 𝑛 ∈ ℂ → ( - ( 2 · 𝑛 ) · π ) = ( ( - 𝑛 · 2 ) · π ) ) |
68 |
63 67 17
|
3eqtrd |
⊢ ( 𝑛 ∈ ℂ → ( ( 2 · 𝑛 ) · - π ) = ( - 𝑛 · ( 2 · π ) ) ) |
69 |
57
|
mulid2d |
⊢ ( 𝑛 ∈ ℂ → ( 1 · - π ) = - π ) |
70 |
68 69
|
oveq12d |
⊢ ( 𝑛 ∈ ℂ → ( ( ( 2 · 𝑛 ) · - π ) + ( 1 · - π ) ) = ( ( - 𝑛 · ( 2 · π ) ) + - π ) ) |
71 |
13 57
|
addcomd |
⊢ ( 𝑛 ∈ ℂ → ( ( - 𝑛 · ( 2 · π ) ) + - π ) = ( - π + ( - 𝑛 · ( 2 · π ) ) ) ) |
72 |
70 71
|
eqtrd |
⊢ ( 𝑛 ∈ ℂ → ( ( ( 2 · 𝑛 ) · - π ) + ( 1 · - π ) ) = ( - π + ( - 𝑛 · ( 2 · π ) ) ) ) |
73 |
7 72
|
syl |
⊢ ( 𝑛 ∈ ℤ → ( ( ( 2 · 𝑛 ) · - π ) + ( 1 · - π ) ) = ( - π + ( - 𝑛 · ( 2 · π ) ) ) ) |
74 |
73
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝐾 ) → ( ( ( 2 · 𝑛 ) · - π ) + ( 1 · - π ) ) = ( - π + ( - 𝑛 · ( 2 · π ) ) ) ) |
75 |
53 60 74
|
3eqtrd |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝐾 ) → ( 𝐾 · - π ) = ( - π + ( - 𝑛 · ( 2 · π ) ) ) ) |
76 |
75
|
3adant1 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝐾 ) → ( 𝐾 · - π ) = ( - π + ( - 𝑛 · ( 2 · π ) ) ) ) |
77 |
76
|
fveq2d |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝐾 ) → ( cos ‘ ( 𝐾 · - π ) ) = ( cos ‘ ( - π + ( - 𝑛 · ( 2 · π ) ) ) ) ) |
78 |
77
|
3adant1r |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾 ) ∧ 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝐾 ) → ( cos ‘ ( 𝐾 · - π ) ) = ( cos ‘ ( - π + ( - 𝑛 · ( 2 · π ) ) ) ) ) |
79 |
|
cosper |
⊢ ( ( - π ∈ ℂ ∧ - 𝑛 ∈ ℤ ) → ( cos ‘ ( - π + ( - 𝑛 · ( 2 · π ) ) ) ) = ( cos ‘ - π ) ) |
80 |
56 36 79
|
sylancr |
⊢ ( 𝑛 ∈ ℤ → ( cos ‘ ( - π + ( - 𝑛 · ( 2 · π ) ) ) ) = ( cos ‘ - π ) ) |
81 |
80
|
3ad2ant2 |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾 ) ∧ 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝐾 ) → ( cos ‘ ( - π + ( - 𝑛 · ( 2 · π ) ) ) ) = ( cos ‘ - π ) ) |
82 |
|
cosnegpi |
⊢ ( cos ‘ - π ) = - 1 |
83 |
|
iffalse |
⊢ ( ¬ 2 ∥ 𝐾 → if ( 2 ∥ 𝐾 , 1 , - 1 ) = - 1 ) |
84 |
82 83
|
eqtr4id |
⊢ ( ¬ 2 ∥ 𝐾 → ( cos ‘ - π ) = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) |
85 |
84
|
adantl |
⊢ ( ( 𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾 ) → ( cos ‘ - π ) = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) |
86 |
85
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾 ) ∧ 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝐾 ) → ( cos ‘ - π ) = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) |
87 |
78 81 86
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾 ) ∧ 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝐾 ) → ( cos ‘ ( 𝐾 · - π ) ) = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) |
88 |
87
|
rexlimdv3a |
⊢ ( ( 𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾 ) → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝐾 → ( cos ‘ ( 𝐾 · - π ) ) = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) ) |
89 |
50 88
|
mpd |
⊢ ( ( 𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾 ) → ( cos ‘ ( 𝐾 · - π ) ) = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) |
90 |
48 89
|
pm2.61dan |
⊢ ( 𝐾 ∈ ℤ → ( cos ‘ ( 𝐾 · - π ) ) = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) |