Step |
Hyp |
Ref |
Expression |
1 |
|
negicn |
⊢ - i ∈ ℂ |
2 |
|
mulcl |
⊢ ( ( - i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - i · 𝐴 ) ∈ ℂ ) |
3 |
1 2
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( - i · 𝐴 ) ∈ ℂ ) |
4 |
|
efcl |
⊢ ( ( - i · 𝐴 ) ∈ ℂ → ( exp ‘ ( - i · 𝐴 ) ) ∈ ℂ ) |
5 |
3 4
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · 𝐴 ) ) ∈ ℂ ) |
6 |
|
ax-icn |
⊢ i ∈ ℂ |
7 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
8 |
6 7
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
9 |
|
efcl |
⊢ ( ( i · 𝐴 ) ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) ∈ ℂ ) |
10 |
8 9
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) ∈ ℂ ) |
11 |
|
mulneg12 |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - i · 𝐴 ) = ( i · - 𝐴 ) ) |
12 |
6 11
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( - i · 𝐴 ) = ( i · - 𝐴 ) ) |
13 |
12
|
eqcomd |
⊢ ( 𝐴 ∈ ℂ → ( i · - 𝐴 ) = ( - i · 𝐴 ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · - 𝐴 ) ) = ( exp ‘ ( - i · 𝐴 ) ) ) |
15 |
|
mul2neg |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - i · - 𝐴 ) = ( i · 𝐴 ) ) |
16 |
6 15
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( - i · - 𝐴 ) = ( i · 𝐴 ) ) |
17 |
16
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · - 𝐴 ) ) = ( exp ‘ ( i · 𝐴 ) ) ) |
18 |
14 17
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · - 𝐴 ) ) + ( exp ‘ ( - i · - 𝐴 ) ) ) = ( ( exp ‘ ( - i · 𝐴 ) ) + ( exp ‘ ( i · 𝐴 ) ) ) ) |
19 |
5 10 18
|
comraddd |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · - 𝐴 ) ) + ( exp ‘ ( - i · - 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) + ( exp ‘ ( - i · 𝐴 ) ) ) ) |
20 |
19
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( i · - 𝐴 ) ) + ( exp ‘ ( - i · - 𝐴 ) ) ) / 2 ) = ( ( ( exp ‘ ( i · 𝐴 ) ) + ( exp ‘ ( - i · 𝐴 ) ) ) / 2 ) ) |
21 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
22 |
|
cosval |
⊢ ( - 𝐴 ∈ ℂ → ( cos ‘ - 𝐴 ) = ( ( ( exp ‘ ( i · - 𝐴 ) ) + ( exp ‘ ( - i · - 𝐴 ) ) ) / 2 ) ) |
23 |
21 22
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ - 𝐴 ) = ( ( ( exp ‘ ( i · - 𝐴 ) ) + ( exp ‘ ( - i · - 𝐴 ) ) ) / 2 ) ) |
24 |
|
cosval |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) = ( ( ( exp ‘ ( i · 𝐴 ) ) + ( exp ‘ ( - i · 𝐴 ) ) ) / 2 ) ) |
25 |
20 23 24
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ - 𝐴 ) = ( cos ‘ 𝐴 ) ) |