| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negicn | ⊢ - i  ∈  ℂ | 
						
							| 2 |  | mulcl | ⊢ ( ( - i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( - i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 3 | 1 2 | mpan | ⊢ ( 𝐴  ∈  ℂ  →  ( - i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 4 |  | efcl | ⊢ ( ( - i  ·  𝐴 )  ∈  ℂ  →  ( exp ‘ ( - i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( exp ‘ ( - i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 6 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 7 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 8 | 6 7 | mpan | ⊢ ( 𝐴  ∈  ℂ  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 9 |  | efcl | ⊢ ( ( i  ·  𝐴 )  ∈  ℂ  →  ( exp ‘ ( i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( exp ‘ ( i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 11 |  | mulneg12 | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( - i  ·  𝐴 )  =  ( i  ·  - 𝐴 ) ) | 
						
							| 12 | 6 11 | mpan | ⊢ ( 𝐴  ∈  ℂ  →  ( - i  ·  𝐴 )  =  ( i  ·  - 𝐴 ) ) | 
						
							| 13 | 12 | eqcomd | ⊢ ( 𝐴  ∈  ℂ  →  ( i  ·  - 𝐴 )  =  ( - i  ·  𝐴 ) ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( exp ‘ ( i  ·  - 𝐴 ) )  =  ( exp ‘ ( - i  ·  𝐴 ) ) ) | 
						
							| 15 |  | mul2neg | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( - i  ·  - 𝐴 )  =  ( i  ·  𝐴 ) ) | 
						
							| 16 | 6 15 | mpan | ⊢ ( 𝐴  ∈  ℂ  →  ( - i  ·  - 𝐴 )  =  ( i  ·  𝐴 ) ) | 
						
							| 17 | 16 | fveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( exp ‘ ( - i  ·  - 𝐴 ) )  =  ( exp ‘ ( i  ·  𝐴 ) ) ) | 
						
							| 18 | 14 17 | oveq12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( exp ‘ ( i  ·  - 𝐴 ) )  +  ( exp ‘ ( - i  ·  - 𝐴 ) ) )  =  ( ( exp ‘ ( - i  ·  𝐴 ) )  +  ( exp ‘ ( i  ·  𝐴 ) ) ) ) | 
						
							| 19 | 5 10 18 | comraddd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( exp ‘ ( i  ·  - 𝐴 ) )  +  ( exp ‘ ( - i  ·  - 𝐴 ) ) )  =  ( ( exp ‘ ( i  ·  𝐴 ) )  +  ( exp ‘ ( - i  ·  𝐴 ) ) ) ) | 
						
							| 20 | 19 | oveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( exp ‘ ( i  ·  - 𝐴 ) )  +  ( exp ‘ ( - i  ·  - 𝐴 ) ) )  /  2 )  =  ( ( ( exp ‘ ( i  ·  𝐴 ) )  +  ( exp ‘ ( - i  ·  𝐴 ) ) )  /  2 ) ) | 
						
							| 21 |  | negcl | ⊢ ( 𝐴  ∈  ℂ  →  - 𝐴  ∈  ℂ ) | 
						
							| 22 |  | cosval | ⊢ ( - 𝐴  ∈  ℂ  →  ( cos ‘ - 𝐴 )  =  ( ( ( exp ‘ ( i  ·  - 𝐴 ) )  +  ( exp ‘ ( - i  ·  - 𝐴 ) ) )  /  2 ) ) | 
						
							| 23 | 21 22 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ - 𝐴 )  =  ( ( ( exp ‘ ( i  ·  - 𝐴 ) )  +  ( exp ‘ ( - i  ·  - 𝐴 ) ) )  /  2 ) ) | 
						
							| 24 |  | cosval | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ 𝐴 )  =  ( ( ( exp ‘ ( i  ·  𝐴 ) )  +  ( exp ‘ ( - i  ·  𝐴 ) ) )  /  2 ) ) | 
						
							| 25 | 20 23 24 | 3eqtr4d | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ - 𝐴 )  =  ( cos ‘ 𝐴 ) ) |