Metamath Proof Explorer


Theorem cosneghalfpi

Description: The cosine of -u _pi / 2 is zero. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Assertion cosneghalfpi ( cos ‘ - ( π / 2 ) ) = 0

Proof

Step Hyp Ref Expression
1 halfpire ( π / 2 ) ∈ ℝ
2 1 recni ( π / 2 ) ∈ ℂ
3 cosneg ( ( π / 2 ) ∈ ℂ → ( cos ‘ - ( π / 2 ) ) = ( cos ‘ ( π / 2 ) ) )
4 2 3 ax-mp ( cos ‘ - ( π / 2 ) ) = ( cos ‘ ( π / 2 ) )
5 coshalfpi ( cos ‘ ( π / 2 ) ) = 0
6 4 5 eqtri ( cos ‘ - ( π / 2 ) ) = 0