Step |
Hyp |
Ref |
Expression |
1 |
|
2cn |
⊢ 2 ∈ ℂ |
2 |
|
picn |
⊢ π ∈ ℂ |
3 |
1 2
|
mulcli |
⊢ ( 2 · π ) ∈ ℂ |
4 |
3
|
mulm1i |
⊢ ( - 1 · ( 2 · π ) ) = - ( 2 · π ) |
5 |
4
|
oveq2i |
⊢ ( π + ( - 1 · ( 2 · π ) ) ) = ( π + - ( 2 · π ) ) |
6 |
2 3
|
negsubi |
⊢ ( π + - ( 2 · π ) ) = ( π − ( 2 · π ) ) |
7 |
|
sub2times |
⊢ ( π ∈ ℂ → ( π − ( 2 · π ) ) = - π ) |
8 |
2 7
|
ax-mp |
⊢ ( π − ( 2 · π ) ) = - π |
9 |
5 6 8
|
3eqtrri |
⊢ - π = ( π + ( - 1 · ( 2 · π ) ) ) |
10 |
9
|
fveq2i |
⊢ ( cos ‘ - π ) = ( cos ‘ ( π + ( - 1 · ( 2 · π ) ) ) ) |
11 |
|
neg1z |
⊢ - 1 ∈ ℤ |
12 |
|
cosper |
⊢ ( ( π ∈ ℂ ∧ - 1 ∈ ℤ ) → ( cos ‘ ( π + ( - 1 · ( 2 · π ) ) ) ) = ( cos ‘ π ) ) |
13 |
2 11 12
|
mp2an |
⊢ ( cos ‘ ( π + ( - 1 · ( 2 · π ) ) ) ) = ( cos ‘ π ) |
14 |
|
cospi |
⊢ ( cos ‘ π ) = - 1 |
15 |
10 13 14
|
3eqtri |
⊢ ( cos ‘ - π ) = - 1 |