| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpll | ⊢ ( ( ( 𝐴  ∈  ( 0 [,] π )  ∧  𝐵  ∈  ( 0 [,] π ) )  ∧  𝐴  <  𝐵 )  →  𝐴  ∈  ( 0 [,] π ) ) | 
						
							| 2 |  | simplr | ⊢ ( ( ( 𝐴  ∈  ( 0 [,] π )  ∧  𝐵  ∈  ( 0 [,] π ) )  ∧  𝐴  <  𝐵 )  →  𝐵  ∈  ( 0 [,] π ) ) | 
						
							| 3 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ( 0 [,] π )  ∧  𝐵  ∈  ( 0 [,] π ) )  ∧  𝐴  <  𝐵 )  →  𝐴  <  𝐵 ) | 
						
							| 4 | 1 2 3 | cosordlem | ⊢ ( ( ( 𝐴  ∈  ( 0 [,] π )  ∧  𝐵  ∈  ( 0 [,] π ) )  ∧  𝐴  <  𝐵 )  →  ( cos ‘ 𝐵 )  <  ( cos ‘ 𝐴 ) ) | 
						
							| 5 | 4 | ex | ⊢ ( ( 𝐴  ∈  ( 0 [,] π )  ∧  𝐵  ∈  ( 0 [,] π ) )  →  ( 𝐴  <  𝐵  →  ( cos ‘ 𝐵 )  <  ( cos ‘ 𝐴 ) ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝐴  =  𝐵  →  ( cos ‘ 𝐴 )  =  ( cos ‘ 𝐵 ) ) | 
						
							| 7 | 6 | eqcomd | ⊢ ( 𝐴  =  𝐵  →  ( cos ‘ 𝐵 )  =  ( cos ‘ 𝐴 ) ) | 
						
							| 8 | 7 | a1i | ⊢ ( ( 𝐴  ∈  ( 0 [,] π )  ∧  𝐵  ∈  ( 0 [,] π ) )  →  ( 𝐴  =  𝐵  →  ( cos ‘ 𝐵 )  =  ( cos ‘ 𝐴 ) ) ) | 
						
							| 9 |  | simplr | ⊢ ( ( ( 𝐴  ∈  ( 0 [,] π )  ∧  𝐵  ∈  ( 0 [,] π ) )  ∧  𝐵  <  𝐴 )  →  𝐵  ∈  ( 0 [,] π ) ) | 
						
							| 10 |  | simpll | ⊢ ( ( ( 𝐴  ∈  ( 0 [,] π )  ∧  𝐵  ∈  ( 0 [,] π ) )  ∧  𝐵  <  𝐴 )  →  𝐴  ∈  ( 0 [,] π ) ) | 
						
							| 11 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ( 0 [,] π )  ∧  𝐵  ∈  ( 0 [,] π ) )  ∧  𝐵  <  𝐴 )  →  𝐵  <  𝐴 ) | 
						
							| 12 | 9 10 11 | cosordlem | ⊢ ( ( ( 𝐴  ∈  ( 0 [,] π )  ∧  𝐵  ∈  ( 0 [,] π ) )  ∧  𝐵  <  𝐴 )  →  ( cos ‘ 𝐴 )  <  ( cos ‘ 𝐵 ) ) | 
						
							| 13 | 12 | ex | ⊢ ( ( 𝐴  ∈  ( 0 [,] π )  ∧  𝐵  ∈  ( 0 [,] π ) )  →  ( 𝐵  <  𝐴  →  ( cos ‘ 𝐴 )  <  ( cos ‘ 𝐵 ) ) ) | 
						
							| 14 | 8 13 | orim12d | ⊢ ( ( 𝐴  ∈  ( 0 [,] π )  ∧  𝐵  ∈  ( 0 [,] π ) )  →  ( ( 𝐴  =  𝐵  ∨  𝐵  <  𝐴 )  →  ( ( cos ‘ 𝐵 )  =  ( cos ‘ 𝐴 )  ∨  ( cos ‘ 𝐴 )  <  ( cos ‘ 𝐵 ) ) ) ) | 
						
							| 15 | 14 | con3d | ⊢ ( ( 𝐴  ∈  ( 0 [,] π )  ∧  𝐵  ∈  ( 0 [,] π ) )  →  ( ¬  ( ( cos ‘ 𝐵 )  =  ( cos ‘ 𝐴 )  ∨  ( cos ‘ 𝐴 )  <  ( cos ‘ 𝐵 ) )  →  ¬  ( 𝐴  =  𝐵  ∨  𝐵  <  𝐴 ) ) ) | 
						
							| 16 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 17 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 18 | 16 17 | elicc2i | ⊢ ( 𝐴  ∈  ( 0 [,] π )  ↔  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴  ∧  𝐴  ≤  π ) ) | 
						
							| 19 | 18 | simp1bi | ⊢ ( 𝐴  ∈  ( 0 [,] π )  →  𝐴  ∈  ℝ ) | 
						
							| 20 | 16 17 | elicc2i | ⊢ ( 𝐵  ∈  ( 0 [,] π )  ↔  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵  ∧  𝐵  ≤  π ) ) | 
						
							| 21 | 20 | simp1bi | ⊢ ( 𝐵  ∈  ( 0 [,] π )  →  𝐵  ∈  ℝ ) | 
						
							| 22 |  | recoscl | ⊢ ( 𝐵  ∈  ℝ  →  ( cos ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 23 |  | recoscl | ⊢ ( 𝐴  ∈  ℝ  →  ( cos ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 24 |  | axlttri | ⊢ ( ( ( cos ‘ 𝐵 )  ∈  ℝ  ∧  ( cos ‘ 𝐴 )  ∈  ℝ )  →  ( ( cos ‘ 𝐵 )  <  ( cos ‘ 𝐴 )  ↔  ¬  ( ( cos ‘ 𝐵 )  =  ( cos ‘ 𝐴 )  ∨  ( cos ‘ 𝐴 )  <  ( cos ‘ 𝐵 ) ) ) ) | 
						
							| 25 | 22 23 24 | syl2anr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( cos ‘ 𝐵 )  <  ( cos ‘ 𝐴 )  ↔  ¬  ( ( cos ‘ 𝐵 )  =  ( cos ‘ 𝐴 )  ∨  ( cos ‘ 𝐴 )  <  ( cos ‘ 𝐵 ) ) ) ) | 
						
							| 26 | 19 21 25 | syl2an | ⊢ ( ( 𝐴  ∈  ( 0 [,] π )  ∧  𝐵  ∈  ( 0 [,] π ) )  →  ( ( cos ‘ 𝐵 )  <  ( cos ‘ 𝐴 )  ↔  ¬  ( ( cos ‘ 𝐵 )  =  ( cos ‘ 𝐴 )  ∨  ( cos ‘ 𝐴 )  <  ( cos ‘ 𝐵 ) ) ) ) | 
						
							| 27 |  | axlttri | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  <  𝐵  ↔  ¬  ( 𝐴  =  𝐵  ∨  𝐵  <  𝐴 ) ) ) | 
						
							| 28 | 19 21 27 | syl2an | ⊢ ( ( 𝐴  ∈  ( 0 [,] π )  ∧  𝐵  ∈  ( 0 [,] π ) )  →  ( 𝐴  <  𝐵  ↔  ¬  ( 𝐴  =  𝐵  ∨  𝐵  <  𝐴 ) ) ) | 
						
							| 29 | 15 26 28 | 3imtr4d | ⊢ ( ( 𝐴  ∈  ( 0 [,] π )  ∧  𝐵  ∈  ( 0 [,] π ) )  →  ( ( cos ‘ 𝐵 )  <  ( cos ‘ 𝐴 )  →  𝐴  <  𝐵 ) ) | 
						
							| 30 | 5 29 | impbid | ⊢ ( ( 𝐴  ∈  ( 0 [,] π )  ∧  𝐵  ∈  ( 0 [,] π ) )  →  ( 𝐴  <  𝐵  ↔  ( cos ‘ 𝐵 )  <  ( cos ‘ 𝐴 ) ) ) |