| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cosord.1 | ⊢ ( 𝜑  →  𝐴  ∈  ( 0 [,] π ) ) | 
						
							| 2 |  | cosord.2 | ⊢ ( 𝜑  →  𝐵  ∈  ( 0 [,] π ) ) | 
						
							| 3 |  | cosord.3 | ⊢ ( 𝜑  →  𝐴  <  𝐵 ) | 
						
							| 4 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 5 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 6 | 4 5 | elicc2i | ⊢ ( 𝐵  ∈  ( 0 [,] π )  ↔  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵  ∧  𝐵  ≤  π ) ) | 
						
							| 7 | 2 6 | sylib | ⊢ ( 𝜑  →  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵  ∧  𝐵  ≤  π ) ) | 
						
							| 8 | 7 | simp1d | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 9 | 8 | recnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 10 | 4 5 | elicc2i | ⊢ ( 𝐴  ∈  ( 0 [,] π )  ↔  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴  ∧  𝐴  ≤  π ) ) | 
						
							| 11 | 1 10 | sylib | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴  ∧  𝐴  ≤  π ) ) | 
						
							| 12 | 11 | simp1d | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 13 | 12 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 14 |  | subcos | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( cos ‘ 𝐴 )  −  ( cos ‘ 𝐵 ) )  =  ( 2  ·  ( ( sin ‘ ( ( 𝐵  +  𝐴 )  /  2 ) )  ·  ( sin ‘ ( ( 𝐵  −  𝐴 )  /  2 ) ) ) ) ) | 
						
							| 15 | 9 13 14 | syl2anc | ⊢ ( 𝜑  →  ( ( cos ‘ 𝐴 )  −  ( cos ‘ 𝐵 ) )  =  ( 2  ·  ( ( sin ‘ ( ( 𝐵  +  𝐴 )  /  2 ) )  ·  ( sin ‘ ( ( 𝐵  −  𝐴 )  /  2 ) ) ) ) ) | 
						
							| 16 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 17 | 8 12 | readdcld | ⊢ ( 𝜑  →  ( 𝐵  +  𝐴 )  ∈  ℝ ) | 
						
							| 18 | 17 | rehalfcld | ⊢ ( 𝜑  →  ( ( 𝐵  +  𝐴 )  /  2 )  ∈  ℝ ) | 
						
							| 19 | 18 | resincld | ⊢ ( 𝜑  →  ( sin ‘ ( ( 𝐵  +  𝐴 )  /  2 ) )  ∈  ℝ ) | 
						
							| 20 | 4 | a1i | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 21 | 11 | simp2d | ⊢ ( 𝜑  →  0  ≤  𝐴 ) | 
						
							| 22 | 20 12 8 21 3 | lelttrd | ⊢ ( 𝜑  →  0  <  𝐵 ) | 
						
							| 23 | 8 12 22 21 | addgtge0d | ⊢ ( 𝜑  →  0  <  ( 𝐵  +  𝐴 ) ) | 
						
							| 24 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 25 |  | 2pos | ⊢ 0  <  2 | 
						
							| 26 |  | divgt0 | ⊢ ( ( ( ( 𝐵  +  𝐴 )  ∈  ℝ  ∧  0  <  ( 𝐵  +  𝐴 ) )  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  0  <  ( ( 𝐵  +  𝐴 )  /  2 ) ) | 
						
							| 27 | 24 25 26 | mpanr12 | ⊢ ( ( ( 𝐵  +  𝐴 )  ∈  ℝ  ∧  0  <  ( 𝐵  +  𝐴 ) )  →  0  <  ( ( 𝐵  +  𝐴 )  /  2 ) ) | 
						
							| 28 | 17 23 27 | syl2anc | ⊢ ( 𝜑  →  0  <  ( ( 𝐵  +  𝐴 )  /  2 ) ) | 
						
							| 29 | 5 | a1i | ⊢ ( 𝜑  →  π  ∈  ℝ ) | 
						
							| 30 | 12 8 8 3 | ltadd2dd | ⊢ ( 𝜑  →  ( 𝐵  +  𝐴 )  <  ( 𝐵  +  𝐵 ) ) | 
						
							| 31 | 9 | 2timesd | ⊢ ( 𝜑  →  ( 2  ·  𝐵 )  =  ( 𝐵  +  𝐵 ) ) | 
						
							| 32 | 30 31 | breqtrrd | ⊢ ( 𝜑  →  ( 𝐵  +  𝐴 )  <  ( 2  ·  𝐵 ) ) | 
						
							| 33 | 24 | a1i | ⊢ ( 𝜑  →  2  ∈  ℝ ) | 
						
							| 34 | 25 | a1i | ⊢ ( 𝜑  →  0  <  2 ) | 
						
							| 35 |  | ltdivmul | ⊢ ( ( ( 𝐵  +  𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( ( 𝐵  +  𝐴 )  /  2 )  <  𝐵  ↔  ( 𝐵  +  𝐴 )  <  ( 2  ·  𝐵 ) ) ) | 
						
							| 36 | 17 8 33 34 35 | syl112anc | ⊢ ( 𝜑  →  ( ( ( 𝐵  +  𝐴 )  /  2 )  <  𝐵  ↔  ( 𝐵  +  𝐴 )  <  ( 2  ·  𝐵 ) ) ) | 
						
							| 37 | 32 36 | mpbird | ⊢ ( 𝜑  →  ( ( 𝐵  +  𝐴 )  /  2 )  <  𝐵 ) | 
						
							| 38 | 7 | simp3d | ⊢ ( 𝜑  →  𝐵  ≤  π ) | 
						
							| 39 | 18 8 29 37 38 | ltletrd | ⊢ ( 𝜑  →  ( ( 𝐵  +  𝐴 )  /  2 )  <  π ) | 
						
							| 40 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 41 | 5 | rexri | ⊢ π  ∈  ℝ* | 
						
							| 42 |  | elioo2 | ⊢ ( ( 0  ∈  ℝ*  ∧  π  ∈  ℝ* )  →  ( ( ( 𝐵  +  𝐴 )  /  2 )  ∈  ( 0 (,) π )  ↔  ( ( ( 𝐵  +  𝐴 )  /  2 )  ∈  ℝ  ∧  0  <  ( ( 𝐵  +  𝐴 )  /  2 )  ∧  ( ( 𝐵  +  𝐴 )  /  2 )  <  π ) ) ) | 
						
							| 43 | 40 41 42 | mp2an | ⊢ ( ( ( 𝐵  +  𝐴 )  /  2 )  ∈  ( 0 (,) π )  ↔  ( ( ( 𝐵  +  𝐴 )  /  2 )  ∈  ℝ  ∧  0  <  ( ( 𝐵  +  𝐴 )  /  2 )  ∧  ( ( 𝐵  +  𝐴 )  /  2 )  <  π ) ) | 
						
							| 44 | 18 28 39 43 | syl3anbrc | ⊢ ( 𝜑  →  ( ( 𝐵  +  𝐴 )  /  2 )  ∈  ( 0 (,) π ) ) | 
						
							| 45 |  | sinq12gt0 | ⊢ ( ( ( 𝐵  +  𝐴 )  /  2 )  ∈  ( 0 (,) π )  →  0  <  ( sin ‘ ( ( 𝐵  +  𝐴 )  /  2 ) ) ) | 
						
							| 46 | 44 45 | syl | ⊢ ( 𝜑  →  0  <  ( sin ‘ ( ( 𝐵  +  𝐴 )  /  2 ) ) ) | 
						
							| 47 | 19 46 | elrpd | ⊢ ( 𝜑  →  ( sin ‘ ( ( 𝐵  +  𝐴 )  /  2 ) )  ∈  ℝ+ ) | 
						
							| 48 | 8 12 | resubcld | ⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  ∈  ℝ ) | 
						
							| 49 | 48 | rehalfcld | ⊢ ( 𝜑  →  ( ( 𝐵  −  𝐴 )  /  2 )  ∈  ℝ ) | 
						
							| 50 | 49 | resincld | ⊢ ( 𝜑  →  ( sin ‘ ( ( 𝐵  −  𝐴 )  /  2 ) )  ∈  ℝ ) | 
						
							| 51 | 12 8 | posdifd | ⊢ ( 𝜑  →  ( 𝐴  <  𝐵  ↔  0  <  ( 𝐵  −  𝐴 ) ) ) | 
						
							| 52 | 3 51 | mpbid | ⊢ ( 𝜑  →  0  <  ( 𝐵  −  𝐴 ) ) | 
						
							| 53 |  | divgt0 | ⊢ ( ( ( ( 𝐵  −  𝐴 )  ∈  ℝ  ∧  0  <  ( 𝐵  −  𝐴 ) )  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  0  <  ( ( 𝐵  −  𝐴 )  /  2 ) ) | 
						
							| 54 | 24 25 53 | mpanr12 | ⊢ ( ( ( 𝐵  −  𝐴 )  ∈  ℝ  ∧  0  <  ( 𝐵  −  𝐴 ) )  →  0  <  ( ( 𝐵  −  𝐴 )  /  2 ) ) | 
						
							| 55 | 48 52 54 | syl2anc | ⊢ ( 𝜑  →  0  <  ( ( 𝐵  −  𝐴 )  /  2 ) ) | 
						
							| 56 |  | rehalfcl | ⊢ ( π  ∈  ℝ  →  ( π  /  2 )  ∈  ℝ ) | 
						
							| 57 | 5 56 | mp1i | ⊢ ( 𝜑  →  ( π  /  2 )  ∈  ℝ ) | 
						
							| 58 | 8 12 | subge02d | ⊢ ( 𝜑  →  ( 0  ≤  𝐴  ↔  ( 𝐵  −  𝐴 )  ≤  𝐵 ) ) | 
						
							| 59 | 21 58 | mpbid | ⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  ≤  𝐵 ) | 
						
							| 60 | 48 8 29 59 38 | letrd | ⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  ≤  π ) | 
						
							| 61 |  | lediv1 | ⊢ ( ( ( 𝐵  −  𝐴 )  ∈  ℝ  ∧  π  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( 𝐵  −  𝐴 )  ≤  π  ↔  ( ( 𝐵  −  𝐴 )  /  2 )  ≤  ( π  /  2 ) ) ) | 
						
							| 62 | 48 29 33 34 61 | syl112anc | ⊢ ( 𝜑  →  ( ( 𝐵  −  𝐴 )  ≤  π  ↔  ( ( 𝐵  −  𝐴 )  /  2 )  ≤  ( π  /  2 ) ) ) | 
						
							| 63 | 60 62 | mpbid | ⊢ ( 𝜑  →  ( ( 𝐵  −  𝐴 )  /  2 )  ≤  ( π  /  2 ) ) | 
						
							| 64 |  | pirp | ⊢ π  ∈  ℝ+ | 
						
							| 65 |  | rphalflt | ⊢ ( π  ∈  ℝ+  →  ( π  /  2 )  <  π ) | 
						
							| 66 | 64 65 | mp1i | ⊢ ( 𝜑  →  ( π  /  2 )  <  π ) | 
						
							| 67 | 49 57 29 63 66 | lelttrd | ⊢ ( 𝜑  →  ( ( 𝐵  −  𝐴 )  /  2 )  <  π ) | 
						
							| 68 |  | elioo2 | ⊢ ( ( 0  ∈  ℝ*  ∧  π  ∈  ℝ* )  →  ( ( ( 𝐵  −  𝐴 )  /  2 )  ∈  ( 0 (,) π )  ↔  ( ( ( 𝐵  −  𝐴 )  /  2 )  ∈  ℝ  ∧  0  <  ( ( 𝐵  −  𝐴 )  /  2 )  ∧  ( ( 𝐵  −  𝐴 )  /  2 )  <  π ) ) ) | 
						
							| 69 | 40 41 68 | mp2an | ⊢ ( ( ( 𝐵  −  𝐴 )  /  2 )  ∈  ( 0 (,) π )  ↔  ( ( ( 𝐵  −  𝐴 )  /  2 )  ∈  ℝ  ∧  0  <  ( ( 𝐵  −  𝐴 )  /  2 )  ∧  ( ( 𝐵  −  𝐴 )  /  2 )  <  π ) ) | 
						
							| 70 | 49 55 67 69 | syl3anbrc | ⊢ ( 𝜑  →  ( ( 𝐵  −  𝐴 )  /  2 )  ∈  ( 0 (,) π ) ) | 
						
							| 71 |  | sinq12gt0 | ⊢ ( ( ( 𝐵  −  𝐴 )  /  2 )  ∈  ( 0 (,) π )  →  0  <  ( sin ‘ ( ( 𝐵  −  𝐴 )  /  2 ) ) ) | 
						
							| 72 | 70 71 | syl | ⊢ ( 𝜑  →  0  <  ( sin ‘ ( ( 𝐵  −  𝐴 )  /  2 ) ) ) | 
						
							| 73 | 50 72 | elrpd | ⊢ ( 𝜑  →  ( sin ‘ ( ( 𝐵  −  𝐴 )  /  2 ) )  ∈  ℝ+ ) | 
						
							| 74 | 47 73 | rpmulcld | ⊢ ( 𝜑  →  ( ( sin ‘ ( ( 𝐵  +  𝐴 )  /  2 ) )  ·  ( sin ‘ ( ( 𝐵  −  𝐴 )  /  2 ) ) )  ∈  ℝ+ ) | 
						
							| 75 |  | rpmulcl | ⊢ ( ( 2  ∈  ℝ+  ∧  ( ( sin ‘ ( ( 𝐵  +  𝐴 )  /  2 ) )  ·  ( sin ‘ ( ( 𝐵  −  𝐴 )  /  2 ) ) )  ∈  ℝ+ )  →  ( 2  ·  ( ( sin ‘ ( ( 𝐵  +  𝐴 )  /  2 ) )  ·  ( sin ‘ ( ( 𝐵  −  𝐴 )  /  2 ) ) ) )  ∈  ℝ+ ) | 
						
							| 76 | 16 74 75 | sylancr | ⊢ ( 𝜑  →  ( 2  ·  ( ( sin ‘ ( ( 𝐵  +  𝐴 )  /  2 ) )  ·  ( sin ‘ ( ( 𝐵  −  𝐴 )  /  2 ) ) ) )  ∈  ℝ+ ) | 
						
							| 77 | 15 76 | eqeltrd | ⊢ ( 𝜑  →  ( ( cos ‘ 𝐴 )  −  ( cos ‘ 𝐵 ) )  ∈  ℝ+ ) | 
						
							| 78 | 8 | recoscld | ⊢ ( 𝜑  →  ( cos ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 79 | 12 | recoscld | ⊢ ( 𝜑  →  ( cos ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 80 |  | difrp | ⊢ ( ( ( cos ‘ 𝐵 )  ∈  ℝ  ∧  ( cos ‘ 𝐴 )  ∈  ℝ )  →  ( ( cos ‘ 𝐵 )  <  ( cos ‘ 𝐴 )  ↔  ( ( cos ‘ 𝐴 )  −  ( cos ‘ 𝐵 ) )  ∈  ℝ+ ) ) | 
						
							| 81 | 78 79 80 | syl2anc | ⊢ ( 𝜑  →  ( ( cos ‘ 𝐵 )  <  ( cos ‘ 𝐴 )  ↔  ( ( cos ‘ 𝐴 )  −  ( cos ‘ 𝐵 ) )  ∈  ℝ+ ) ) | 
						
							| 82 | 77 81 | mpbird | ⊢ ( 𝜑  →  ( cos ‘ 𝐵 )  <  ( cos ‘ 𝐴 ) ) |