| Step |
Hyp |
Ref |
Expression |
| 1 |
|
picn |
⊢ π ∈ ℂ |
| 2 |
|
2cn |
⊢ 2 ∈ ℂ |
| 3 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 4 |
1 2 3
|
divcli |
⊢ ( π / 2 ) ∈ ℂ |
| 5 |
|
cos2t |
⊢ ( ( π / 2 ) ∈ ℂ → ( cos ‘ ( 2 · ( π / 2 ) ) ) = ( ( 2 · ( ( cos ‘ ( π / 2 ) ) ↑ 2 ) ) − 1 ) ) |
| 6 |
4 5
|
ax-mp |
⊢ ( cos ‘ ( 2 · ( π / 2 ) ) ) = ( ( 2 · ( ( cos ‘ ( π / 2 ) ) ↑ 2 ) ) − 1 ) |
| 7 |
1 2 3
|
divcan2i |
⊢ ( 2 · ( π / 2 ) ) = π |
| 8 |
7
|
fveq2i |
⊢ ( cos ‘ ( 2 · ( π / 2 ) ) ) = ( cos ‘ π ) |
| 9 |
|
coshalfpi |
⊢ ( cos ‘ ( π / 2 ) ) = 0 |
| 10 |
9
|
oveq1i |
⊢ ( ( cos ‘ ( π / 2 ) ) ↑ 2 ) = ( 0 ↑ 2 ) |
| 11 |
|
sq0 |
⊢ ( 0 ↑ 2 ) = 0 |
| 12 |
10 11
|
eqtri |
⊢ ( ( cos ‘ ( π / 2 ) ) ↑ 2 ) = 0 |
| 13 |
12
|
oveq2i |
⊢ ( 2 · ( ( cos ‘ ( π / 2 ) ) ↑ 2 ) ) = ( 2 · 0 ) |
| 14 |
|
2t0e0 |
⊢ ( 2 · 0 ) = 0 |
| 15 |
13 14
|
eqtri |
⊢ ( 2 · ( ( cos ‘ ( π / 2 ) ) ↑ 2 ) ) = 0 |
| 16 |
15
|
oveq1i |
⊢ ( ( 2 · ( ( cos ‘ ( π / 2 ) ) ↑ 2 ) ) − 1 ) = ( 0 − 1 ) |
| 17 |
|
df-neg |
⊢ - 1 = ( 0 − 1 ) |
| 18 |
16 17
|
eqtr4i |
⊢ ( ( 2 · ( ( cos ‘ ( π / 2 ) ) ↑ 2 ) ) − 1 ) = - 1 |
| 19 |
6 8 18
|
3eqtr3i |
⊢ ( cos ‘ π ) = - 1 |