| Step | Hyp | Ref | Expression | 
						
							| 1 |  | halfpire | ⊢ ( π  /  2 )  ∈  ℝ | 
						
							| 2 |  | neghalfpire | ⊢ - ( π  /  2 )  ∈  ℝ | 
						
							| 3 | 2 1 | elicc2i | ⊢ ( 𝐴  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) )  ↔  ( 𝐴  ∈  ℝ  ∧  - ( π  /  2 )  ≤  𝐴  ∧  𝐴  ≤  ( π  /  2 ) ) ) | 
						
							| 4 | 3 | simp1bi | ⊢ ( 𝐴  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 5 |  | resubcl | ⊢ ( ( ( π  /  2 )  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( ( π  /  2 )  −  𝐴 )  ∈  ℝ ) | 
						
							| 6 | 1 4 5 | sylancr | ⊢ ( 𝐴  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) )  →  ( ( π  /  2 )  −  𝐴 )  ∈  ℝ ) | 
						
							| 7 | 3 | simp3bi | ⊢ ( 𝐴  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) )  →  𝐴  ≤  ( π  /  2 ) ) | 
						
							| 8 |  | subge0 | ⊢ ( ( ( π  /  2 )  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 0  ≤  ( ( π  /  2 )  −  𝐴 )  ↔  𝐴  ≤  ( π  /  2 ) ) ) | 
						
							| 9 | 1 4 8 | sylancr | ⊢ ( 𝐴  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) )  →  ( 0  ≤  ( ( π  /  2 )  −  𝐴 )  ↔  𝐴  ≤  ( π  /  2 ) ) ) | 
						
							| 10 | 7 9 | mpbird | ⊢ ( 𝐴  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) )  →  0  ≤  ( ( π  /  2 )  −  𝐴 ) ) | 
						
							| 11 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 12 |  | halfcl | ⊢ ( π  ∈  ℂ  →  ( π  /  2 )  ∈  ℂ ) | 
						
							| 13 | 11 12 | ax-mp | ⊢ ( π  /  2 )  ∈  ℂ | 
						
							| 14 | 13 | negcli | ⊢ - ( π  /  2 )  ∈  ℂ | 
						
							| 15 | 11 13 | negsubi | ⊢ ( π  +  - ( π  /  2 ) )  =  ( π  −  ( π  /  2 ) ) | 
						
							| 16 |  | pidiv2halves | ⊢ ( ( π  /  2 )  +  ( π  /  2 ) )  =  π | 
						
							| 17 | 11 13 13 16 | subaddrii | ⊢ ( π  −  ( π  /  2 ) )  =  ( π  /  2 ) | 
						
							| 18 | 15 17 | eqtri | ⊢ ( π  +  - ( π  /  2 ) )  =  ( π  /  2 ) | 
						
							| 19 | 13 11 14 18 | subaddrii | ⊢ ( ( π  /  2 )  −  π )  =  - ( π  /  2 ) | 
						
							| 20 | 3 | simp2bi | ⊢ ( 𝐴  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) )  →  - ( π  /  2 )  ≤  𝐴 ) | 
						
							| 21 | 19 20 | eqbrtrid | ⊢ ( 𝐴  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) )  →  ( ( π  /  2 )  −  π )  ≤  𝐴 ) | 
						
							| 22 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 23 |  | suble | ⊢ ( ( ( π  /  2 )  ∈  ℝ  ∧  𝐴  ∈  ℝ  ∧  π  ∈  ℝ )  →  ( ( ( π  /  2 )  −  𝐴 )  ≤  π  ↔  ( ( π  /  2 )  −  π )  ≤  𝐴 ) ) | 
						
							| 24 | 1 22 23 | mp3an13 | ⊢ ( 𝐴  ∈  ℝ  →  ( ( ( π  /  2 )  −  𝐴 )  ≤  π  ↔  ( ( π  /  2 )  −  π )  ≤  𝐴 ) ) | 
						
							| 25 | 4 24 | syl | ⊢ ( 𝐴  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) )  →  ( ( ( π  /  2 )  −  𝐴 )  ≤  π  ↔  ( ( π  /  2 )  −  π )  ≤  𝐴 ) ) | 
						
							| 26 | 21 25 | mpbird | ⊢ ( 𝐴  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) )  →  ( ( π  /  2 )  −  𝐴 )  ≤  π ) | 
						
							| 27 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 28 | 27 22 | elicc2i | ⊢ ( ( ( π  /  2 )  −  𝐴 )  ∈  ( 0 [,] π )  ↔  ( ( ( π  /  2 )  −  𝐴 )  ∈  ℝ  ∧  0  ≤  ( ( π  /  2 )  −  𝐴 )  ∧  ( ( π  /  2 )  −  𝐴 )  ≤  π ) ) | 
						
							| 29 | 6 10 26 28 | syl3anbrc | ⊢ ( 𝐴  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) )  →  ( ( π  /  2 )  −  𝐴 )  ∈  ( 0 [,] π ) ) | 
						
							| 30 |  | sinq12ge0 | ⊢ ( ( ( π  /  2 )  −  𝐴 )  ∈  ( 0 [,] π )  →  0  ≤  ( sin ‘ ( ( π  /  2 )  −  𝐴 ) ) ) | 
						
							| 31 | 29 30 | syl | ⊢ ( 𝐴  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) )  →  0  ≤  ( sin ‘ ( ( π  /  2 )  −  𝐴 ) ) ) | 
						
							| 32 | 4 | recnd | ⊢ ( 𝐴  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 33 |  | sinhalfpim | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ ( ( π  /  2 )  −  𝐴 ) )  =  ( cos ‘ 𝐴 ) ) | 
						
							| 34 | 32 33 | syl | ⊢ ( 𝐴  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) )  →  ( sin ‘ ( ( π  /  2 )  −  𝐴 ) )  =  ( cos ‘ 𝐴 ) ) | 
						
							| 35 | 31 34 | breqtrd | ⊢ ( 𝐴  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) )  →  0  ≤  ( cos ‘ 𝐴 ) ) |