Step |
Hyp |
Ref |
Expression |
1 |
|
halfpire |
⊢ ( π / 2 ) ∈ ℝ |
2 |
|
neghalfpire |
⊢ - ( π / 2 ) ∈ ℝ |
3 |
2 1
|
elicc2i |
⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↔ ( 𝐴 ∈ ℝ ∧ - ( π / 2 ) ≤ 𝐴 ∧ 𝐴 ≤ ( π / 2 ) ) ) |
4 |
3
|
simp1bi |
⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 𝐴 ∈ ℝ ) |
5 |
|
resubcl |
⊢ ( ( ( π / 2 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( π / 2 ) − 𝐴 ) ∈ ℝ ) |
6 |
1 4 5
|
sylancr |
⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( π / 2 ) − 𝐴 ) ∈ ℝ ) |
7 |
3
|
simp3bi |
⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 𝐴 ≤ ( π / 2 ) ) |
8 |
|
subge0 |
⊢ ( ( ( π / 2 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ ( ( π / 2 ) − 𝐴 ) ↔ 𝐴 ≤ ( π / 2 ) ) ) |
9 |
1 4 8
|
sylancr |
⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( 0 ≤ ( ( π / 2 ) − 𝐴 ) ↔ 𝐴 ≤ ( π / 2 ) ) ) |
10 |
7 9
|
mpbird |
⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 0 ≤ ( ( π / 2 ) − 𝐴 ) ) |
11 |
|
picn |
⊢ π ∈ ℂ |
12 |
|
halfcl |
⊢ ( π ∈ ℂ → ( π / 2 ) ∈ ℂ ) |
13 |
11 12
|
ax-mp |
⊢ ( π / 2 ) ∈ ℂ |
14 |
13
|
negcli |
⊢ - ( π / 2 ) ∈ ℂ |
15 |
11 13
|
negsubi |
⊢ ( π + - ( π / 2 ) ) = ( π − ( π / 2 ) ) |
16 |
|
pidiv2halves |
⊢ ( ( π / 2 ) + ( π / 2 ) ) = π |
17 |
11 13 13 16
|
subaddrii |
⊢ ( π − ( π / 2 ) ) = ( π / 2 ) |
18 |
15 17
|
eqtri |
⊢ ( π + - ( π / 2 ) ) = ( π / 2 ) |
19 |
13 11 14 18
|
subaddrii |
⊢ ( ( π / 2 ) − π ) = - ( π / 2 ) |
20 |
3
|
simp2bi |
⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → - ( π / 2 ) ≤ 𝐴 ) |
21 |
19 20
|
eqbrtrid |
⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( π / 2 ) − π ) ≤ 𝐴 ) |
22 |
|
pire |
⊢ π ∈ ℝ |
23 |
|
suble |
⊢ ( ( ( π / 2 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ π ∈ ℝ ) → ( ( ( π / 2 ) − 𝐴 ) ≤ π ↔ ( ( π / 2 ) − π ) ≤ 𝐴 ) ) |
24 |
1 22 23
|
mp3an13 |
⊢ ( 𝐴 ∈ ℝ → ( ( ( π / 2 ) − 𝐴 ) ≤ π ↔ ( ( π / 2 ) − π ) ≤ 𝐴 ) ) |
25 |
4 24
|
syl |
⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( ( π / 2 ) − 𝐴 ) ≤ π ↔ ( ( π / 2 ) − π ) ≤ 𝐴 ) ) |
26 |
21 25
|
mpbird |
⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( π / 2 ) − 𝐴 ) ≤ π ) |
27 |
|
0re |
⊢ 0 ∈ ℝ |
28 |
27 22
|
elicc2i |
⊢ ( ( ( π / 2 ) − 𝐴 ) ∈ ( 0 [,] π ) ↔ ( ( ( π / 2 ) − 𝐴 ) ∈ ℝ ∧ 0 ≤ ( ( π / 2 ) − 𝐴 ) ∧ ( ( π / 2 ) − 𝐴 ) ≤ π ) ) |
29 |
6 10 26 28
|
syl3anbrc |
⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( π / 2 ) − 𝐴 ) ∈ ( 0 [,] π ) ) |
30 |
|
sinq12ge0 |
⊢ ( ( ( π / 2 ) − 𝐴 ) ∈ ( 0 [,] π ) → 0 ≤ ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) ) |
31 |
29 30
|
syl |
⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 0 ≤ ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) ) |
32 |
4
|
recnd |
⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 𝐴 ∈ ℂ ) |
33 |
|
sinhalfpim |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) = ( cos ‘ 𝐴 ) ) |
34 |
32 33
|
syl |
⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) = ( cos ‘ 𝐴 ) ) |
35 |
31 34
|
breqtrd |
⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 0 ≤ ( cos ‘ 𝐴 ) ) |