| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pire |
⊢ π ∈ ℝ |
| 2 |
|
2re |
⊢ 2 ∈ ℝ |
| 3 |
2 1
|
remulcli |
⊢ ( 2 · π ) ∈ ℝ |
| 4 |
3
|
rexri |
⊢ ( 2 · π ) ∈ ℝ* |
| 5 |
|
elico2 |
⊢ ( ( π ∈ ℝ ∧ ( 2 · π ) ∈ ℝ* ) → ( 𝐴 ∈ ( π [,) ( 2 · π ) ) ↔ ( 𝐴 ∈ ℝ ∧ π ≤ 𝐴 ∧ 𝐴 < ( 2 · π ) ) ) ) |
| 6 |
1 4 5
|
mp2an |
⊢ ( 𝐴 ∈ ( π [,) ( 2 · π ) ) ↔ ( 𝐴 ∈ ℝ ∧ π ≤ 𝐴 ∧ 𝐴 < ( 2 · π ) ) ) |
| 7 |
6
|
simp1bi |
⊢ ( 𝐴 ∈ ( π [,) ( 2 · π ) ) → 𝐴 ∈ ℝ ) |
| 8 |
|
0red |
⊢ ( 𝐴 ∈ ( π [,) ( 2 · π ) ) → 0 ∈ ℝ ) |
| 9 |
1
|
a1i |
⊢ ( 𝐴 ∈ ( π [,) ( 2 · π ) ) → π ∈ ℝ ) |
| 10 |
|
pipos |
⊢ 0 < π |
| 11 |
10
|
a1i |
⊢ ( 𝐴 ∈ ( π [,) ( 2 · π ) ) → 0 < π ) |
| 12 |
6
|
simp2bi |
⊢ ( 𝐴 ∈ ( π [,) ( 2 · π ) ) → π ≤ 𝐴 ) |
| 13 |
8 9 7 11 12
|
ltletrd |
⊢ ( 𝐴 ∈ ( π [,) ( 2 · π ) ) → 0 < 𝐴 ) |
| 14 |
6
|
simp3bi |
⊢ ( 𝐴 ∈ ( π [,) ( 2 · π ) ) → 𝐴 < ( 2 · π ) ) |
| 15 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 16 |
|
elioo2 |
⊢ ( ( 0 ∈ ℝ* ∧ ( 2 · π ) ∈ ℝ* ) → ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < ( 2 · π ) ) ) ) |
| 17 |
15 4 16
|
mp2an |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < ( 2 · π ) ) ) |
| 18 |
7 13 14 17
|
syl3anbrc |
⊢ ( 𝐴 ∈ ( π [,) ( 2 · π ) ) → 𝐴 ∈ ( 0 (,) ( 2 · π ) ) ) |
| 19 |
|
cos02pilt1 |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( cos ‘ 𝐴 ) < 1 ) |
| 20 |
18 19
|
syl |
⊢ ( 𝐴 ∈ ( π [,) ( 2 · π ) ) → ( cos ‘ 𝐴 ) < 1 ) |