Description: Subclass theorem for composition. (Contributed by FL, 30-Dec-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | coss1 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∘ 𝐶 ) ⊆ ( 𝐵 ∘ 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbr | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑦 𝐴 𝑧 → 𝑦 𝐵 𝑧 ) ) | |
2 | 1 | anim2d | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐴 𝑧 ) → ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐵 𝑧 ) ) ) |
3 | 2 | eximdv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐴 𝑧 ) → ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐵 𝑧 ) ) ) |
4 | 3 | ssopab2dv | ⊢ ( 𝐴 ⊆ 𝐵 → { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐴 𝑧 ) } ⊆ { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐵 𝑧 ) } ) |
5 | df-co | ⊢ ( 𝐴 ∘ 𝐶 ) = { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐴 𝑧 ) } | |
6 | df-co | ⊢ ( 𝐵 ∘ 𝐶 ) = { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐵 𝑧 ) } | |
7 | 4 5 6 | 3sstr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∘ 𝐶 ) ⊆ ( 𝐵 ∘ 𝐶 ) ) |