Metamath Proof Explorer


Theorem coss1

Description: Subclass theorem for composition. (Contributed by FL, 30-Dec-2010)

Ref Expression
Assertion coss1 ( 𝐴𝐵 → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 ssbr ( 𝐴𝐵 → ( 𝑦 𝐴 𝑧𝑦 𝐵 𝑧 ) )
2 1 anim2d ( 𝐴𝐵 → ( ( 𝑥 𝐶 𝑦𝑦 𝐴 𝑧 ) → ( 𝑥 𝐶 𝑦𝑦 𝐵 𝑧 ) ) )
3 2 eximdv ( 𝐴𝐵 → ( ∃ 𝑦 ( 𝑥 𝐶 𝑦𝑦 𝐴 𝑧 ) → ∃ 𝑦 ( 𝑥 𝐶 𝑦𝑦 𝐵 𝑧 ) ) )
4 3 ssopab2dv ( 𝐴𝐵 → { ⟨ 𝑥 , 𝑧 ⟩ ∣ ∃ 𝑦 ( 𝑥 𝐶 𝑦𝑦 𝐴 𝑧 ) } ⊆ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ∃ 𝑦 ( 𝑥 𝐶 𝑦𝑦 𝐵 𝑧 ) } )
5 df-co ( 𝐴𝐶 ) = { ⟨ 𝑥 , 𝑧 ⟩ ∣ ∃ 𝑦 ( 𝑥 𝐶 𝑦𝑦 𝐴 𝑧 ) }
6 df-co ( 𝐵𝐶 ) = { ⟨ 𝑥 , 𝑧 ⟩ ∣ ∃ 𝑦 ( 𝑥 𝐶 𝑦𝑦 𝐵 𝑧 ) }
7 4 5 6 3sstr4g ( 𝐴𝐵 → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) )