Description: Subclass theorem for composition. (Contributed by NM, 5-Apr-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coss2 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐶 ∘ 𝐴 ) ⊆ ( 𝐶 ∘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbr | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 𝐴 𝑦 → 𝑥 𝐵 𝑦 ) ) | |
| 2 | 1 | anim1d | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑦 𝐶 𝑧 ) → ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐶 𝑧 ) ) ) |
| 3 | 2 | eximdv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑦 ( 𝑥 𝐴 𝑦 ∧ 𝑦 𝐶 𝑧 ) → ∃ 𝑦 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐶 𝑧 ) ) ) |
| 4 | 3 | ssopab2dv | ⊢ ( 𝐴 ⊆ 𝐵 → { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐴 𝑦 ∧ 𝑦 𝐶 𝑧 ) } ⊆ { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐶 𝑧 ) } ) |
| 5 | df-co | ⊢ ( 𝐶 ∘ 𝐴 ) = { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐴 𝑦 ∧ 𝑦 𝐶 𝑧 ) } | |
| 6 | df-co | ⊢ ( 𝐶 ∘ 𝐵 ) = { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐶 𝑧 ) } | |
| 7 | 4 5 6 | 3sstr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐶 ∘ 𝐴 ) ⊆ ( 𝐶 ∘ 𝐵 ) ) |