Metamath Proof Explorer


Theorem coss2

Description: Subclass theorem for composition. (Contributed by NM, 5-Apr-2013)

Ref Expression
Assertion coss2 ( 𝐴𝐵 → ( 𝐶𝐴 ) ⊆ ( 𝐶𝐵 ) )

Proof

Step Hyp Ref Expression
1 ssbr ( 𝐴𝐵 → ( 𝑥 𝐴 𝑦𝑥 𝐵 𝑦 ) )
2 1 anim1d ( 𝐴𝐵 → ( ( 𝑥 𝐴 𝑦𝑦 𝐶 𝑧 ) → ( 𝑥 𝐵 𝑦𝑦 𝐶 𝑧 ) ) )
3 2 eximdv ( 𝐴𝐵 → ( ∃ 𝑦 ( 𝑥 𝐴 𝑦𝑦 𝐶 𝑧 ) → ∃ 𝑦 ( 𝑥 𝐵 𝑦𝑦 𝐶 𝑧 ) ) )
4 3 ssopab2dv ( 𝐴𝐵 → { ⟨ 𝑥 , 𝑧 ⟩ ∣ ∃ 𝑦 ( 𝑥 𝐴 𝑦𝑦 𝐶 𝑧 ) } ⊆ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ∃ 𝑦 ( 𝑥 𝐵 𝑦𝑦 𝐶 𝑧 ) } )
5 df-co ( 𝐶𝐴 ) = { ⟨ 𝑥 , 𝑧 ⟩ ∣ ∃ 𝑦 ( 𝑥 𝐴 𝑦𝑦 𝐶 𝑧 ) }
6 df-co ( 𝐶𝐵 ) = { ⟨ 𝑥 , 𝑧 ⟩ ∣ ∃ 𝑦 ( 𝑥 𝐵 𝑦𝑦 𝐶 𝑧 ) }
7 4 5 6 3sstr4g ( 𝐴𝐵 → ( 𝐶𝐴 ) ⊆ ( 𝐶𝐵 ) )