Metamath Proof Explorer


Theorem coss2cnvepres

Description: Special case of coss1cnvres . (Contributed by Peter Mazsa, 8-Jun-2020)

Ref Expression
Assertion coss2cnvepres ( E ↾ 𝐴 ) = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( ( 𝑢𝐴𝑣𝐴 ) ∧ ∃ 𝑥 ( 𝑥𝑢𝑥𝑣 ) ) }

Proof

Step Hyp Ref Expression
1 coss1cnvres ( E ↾ 𝐴 ) = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( ( 𝑢𝐴𝑣𝐴 ) ∧ ∃ 𝑥 ( 𝑢 E 𝑥𝑣 E 𝑥 ) ) }
2 brcnvep ( 𝑢 ∈ V → ( 𝑢 E 𝑥𝑥𝑢 ) )
3 2 elv ( 𝑢 E 𝑥𝑥𝑢 )
4 brcnvep ( 𝑣 ∈ V → ( 𝑣 E 𝑥𝑥𝑣 ) )
5 4 elv ( 𝑣 E 𝑥𝑥𝑣 )
6 3 5 anbi12i ( ( 𝑢 E 𝑥𝑣 E 𝑥 ) ↔ ( 𝑥𝑢𝑥𝑣 ) )
7 6 exbii ( ∃ 𝑥 ( 𝑢 E 𝑥𝑣 E 𝑥 ) ↔ ∃ 𝑥 ( 𝑥𝑢𝑥𝑣 ) )
8 7 anbi2i ( ( ( 𝑢𝐴𝑣𝐴 ) ∧ ∃ 𝑥 ( 𝑢 E 𝑥𝑣 E 𝑥 ) ) ↔ ( ( 𝑢𝐴𝑣𝐴 ) ∧ ∃ 𝑥 ( 𝑥𝑢𝑥𝑣 ) ) )
9 8 opabbii { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( ( 𝑢𝐴𝑣𝐴 ) ∧ ∃ 𝑥 ( 𝑢 E 𝑥𝑣 E 𝑥 ) ) } = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( ( 𝑢𝐴𝑣𝐴 ) ∧ ∃ 𝑥 ( 𝑥𝑢𝑥𝑣 ) ) }
10 1 9 eqtri ( E ↾ 𝐴 ) = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( ( 𝑢𝐴𝑣𝐴 ) ∧ ∃ 𝑥 ( 𝑥𝑢𝑥𝑣 ) ) }