Metamath Proof Explorer
		
		
		
		Description:  If A is a set then the class of cosets by A is a set.
     (Contributed by Peter Mazsa, 4-Jan-2019)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
				
					 | 
					Assertion | 
					cossex | 
					⊢  ( 𝐴  ∈  𝑉  →   ≀  𝐴  ∈  V )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dfcoss3 | 
							⊢  ≀  𝐴  =  ( 𝐴  ∘  ◡ 𝐴 )  | 
						
						
							| 2 | 
							
								
							 | 
							cnvexg | 
							⊢ ( 𝐴  ∈  𝑉  →  ◡ 𝐴  ∈  V )  | 
						
						
							| 3 | 
							
								
							 | 
							coexg | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  ◡ 𝐴  ∈  V )  →  ( 𝐴  ∘  ◡ 𝐴 )  ∈  V )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							mpdan | 
							⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  ∘  ◡ 𝐴 )  ∈  V )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							eqeltrid | 
							⊢ ( 𝐴  ∈  𝑉  →   ≀  𝐴  ∈  V )  |