Metamath Proof Explorer


Theorem cotr3

Description: Two ways of saying a relation is transitive. (Contributed by RP, 22-Mar-2020)

Ref Expression
Hypotheses cotr3.a 𝐴 = dom 𝑅
cotr3.b 𝐵 = ( 𝐴𝐶 )
cotr3.c 𝐶 = ran 𝑅
Assertion cotr3 ( ( 𝑅𝑅 ) ⊆ 𝑅 ↔ ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) )

Proof

Step Hyp Ref Expression
1 cotr3.a 𝐴 = dom 𝑅
2 cotr3.b 𝐵 = ( 𝐴𝐶 )
3 cotr3.c 𝐶 = ran 𝑅
4 1 eqimss2i dom 𝑅𝐴
5 1 3 ineq12i ( 𝐴𝐶 ) = ( dom 𝑅 ∩ ran 𝑅 )
6 2 5 eqtri 𝐵 = ( dom 𝑅 ∩ ran 𝑅 )
7 6 eqimss2i ( dom 𝑅 ∩ ran 𝑅 ) ⊆ 𝐵
8 3 eqimss2i ran 𝑅𝐶
9 4 7 8 cotr2 ( ( 𝑅𝑅 ) ⊆ 𝑅 ↔ ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) )