Metamath Proof Explorer


Theorem cotrgOLD

Description: Obsolete version of cotrg as of 29-Dec-2024. (Contributed by NM, 27-Dec-1996) (Proof shortened by Andrew Salmon, 27-Aug-2011) Generalized from its special instance cotr . (Revised by Richard Penner, 24-Dec-2019) (Proof shortened by SN, 19-Dec-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion cotrgOLD ( ( 𝐴𝐵 ) ⊆ 𝐶 ↔ ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) )

Proof

Step Hyp Ref Expression
1 relco Rel ( 𝐴𝐵 )
2 ssrel3 ( Rel ( 𝐴𝐵 ) → ( ( 𝐴𝐵 ) ⊆ 𝐶 ↔ ∀ 𝑥𝑧 ( 𝑥 ( 𝐴𝐵 ) 𝑧𝑥 𝐶 𝑧 ) ) )
3 1 2 ax-mp ( ( 𝐴𝐵 ) ⊆ 𝐶 ↔ ∀ 𝑥𝑧 ( 𝑥 ( 𝐴𝐵 ) 𝑧𝑥 𝐶 𝑧 ) )
4 vex 𝑥 ∈ V
5 vex 𝑧 ∈ V
6 4 5 brco ( 𝑥 ( 𝐴𝐵 ) 𝑧 ↔ ∃ 𝑦 ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) )
7 6 imbi1i ( ( 𝑥 ( 𝐴𝐵 ) 𝑧𝑥 𝐶 𝑧 ) ↔ ( ∃ 𝑦 ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) )
8 19.23v ( ∀ 𝑦 ( ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ↔ ( ∃ 𝑦 ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) )
9 7 8 bitr4i ( ( 𝑥 ( 𝐴𝐵 ) 𝑧𝑥 𝐶 𝑧 ) ↔ ∀ 𝑦 ( ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) )
10 9 albii ( ∀ 𝑧 ( 𝑥 ( 𝐴𝐵 ) 𝑧𝑥 𝐶 𝑧 ) ↔ ∀ 𝑧𝑦 ( ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) )
11 alcom ( ∀ 𝑧𝑦 ( ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ↔ ∀ 𝑦𝑧 ( ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) )
12 10 11 bitri ( ∀ 𝑧 ( 𝑥 ( 𝐴𝐵 ) 𝑧𝑥 𝐶 𝑧 ) ↔ ∀ 𝑦𝑧 ( ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) )
13 12 albii ( ∀ 𝑥𝑧 ( 𝑥 ( 𝐴𝐵 ) 𝑧𝑥 𝐶 𝑧 ) ↔ ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) )
14 3 13 bitri ( ( 𝐴𝐵 ) ⊆ 𝐶 ↔ ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) )