| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relco | ⊢ Rel  ( 𝐴  ∘  𝐵 ) | 
						
							| 2 |  | ssrel | ⊢ ( Rel  ( 𝐴  ∘  𝐵 )  →  ( ( 𝐴  ∘  𝐵 )  ⊆  𝐶  ↔  ∀ 𝑥 ∀ 𝑧 ( 〈 𝑥 ,  𝑧 〉  ∈  ( 𝐴  ∘  𝐵 )  →  〈 𝑥 ,  𝑧 〉  ∈  𝐶 ) ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( ( 𝐴  ∘  𝐵 )  ⊆  𝐶  ↔  ∀ 𝑥 ∀ 𝑧 ( 〈 𝑥 ,  𝑧 〉  ∈  ( 𝐴  ∘  𝐵 )  →  〈 𝑥 ,  𝑧 〉  ∈  𝐶 ) ) | 
						
							| 4 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 5 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 6 | 4 5 | opelco | ⊢ ( 〈 𝑥 ,  𝑧 〉  ∈  ( 𝐴  ∘  𝐵 )  ↔  ∃ 𝑦 ( 𝑥 𝐵 𝑦  ∧  𝑦 𝐴 𝑧 ) ) | 
						
							| 7 |  | df-br | ⊢ ( 𝑥 𝐶 𝑧  ↔  〈 𝑥 ,  𝑧 〉  ∈  𝐶 ) | 
						
							| 8 | 7 | bicomi | ⊢ ( 〈 𝑥 ,  𝑧 〉  ∈  𝐶  ↔  𝑥 𝐶 𝑧 ) | 
						
							| 9 | 6 8 | imbi12i | ⊢ ( ( 〈 𝑥 ,  𝑧 〉  ∈  ( 𝐴  ∘  𝐵 )  →  〈 𝑥 ,  𝑧 〉  ∈  𝐶 )  ↔  ( ∃ 𝑦 ( 𝑥 𝐵 𝑦  ∧  𝑦 𝐴 𝑧 )  →  𝑥 𝐶 𝑧 ) ) | 
						
							| 10 |  | 19.23v | ⊢ ( ∀ 𝑦 ( ( 𝑥 𝐵 𝑦  ∧  𝑦 𝐴 𝑧 )  →  𝑥 𝐶 𝑧 )  ↔  ( ∃ 𝑦 ( 𝑥 𝐵 𝑦  ∧  𝑦 𝐴 𝑧 )  →  𝑥 𝐶 𝑧 ) ) | 
						
							| 11 | 9 10 | bitr4i | ⊢ ( ( 〈 𝑥 ,  𝑧 〉  ∈  ( 𝐴  ∘  𝐵 )  →  〈 𝑥 ,  𝑧 〉  ∈  𝐶 )  ↔  ∀ 𝑦 ( ( 𝑥 𝐵 𝑦  ∧  𝑦 𝐴 𝑧 )  →  𝑥 𝐶 𝑧 ) ) | 
						
							| 12 | 11 | albii | ⊢ ( ∀ 𝑧 ( 〈 𝑥 ,  𝑧 〉  ∈  ( 𝐴  ∘  𝐵 )  →  〈 𝑥 ,  𝑧 〉  ∈  𝐶 )  ↔  ∀ 𝑧 ∀ 𝑦 ( ( 𝑥 𝐵 𝑦  ∧  𝑦 𝐴 𝑧 )  →  𝑥 𝐶 𝑧 ) ) | 
						
							| 13 |  | alcom | ⊢ ( ∀ 𝑧 ∀ 𝑦 ( ( 𝑥 𝐵 𝑦  ∧  𝑦 𝐴 𝑧 )  →  𝑥 𝐶 𝑧 )  ↔  ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐵 𝑦  ∧  𝑦 𝐴 𝑧 )  →  𝑥 𝐶 𝑧 ) ) | 
						
							| 14 | 12 13 | bitri | ⊢ ( ∀ 𝑧 ( 〈 𝑥 ,  𝑧 〉  ∈  ( 𝐴  ∘  𝐵 )  →  〈 𝑥 ,  𝑧 〉  ∈  𝐶 )  ↔  ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐵 𝑦  ∧  𝑦 𝐴 𝑧 )  →  𝑥 𝐶 𝑧 ) ) | 
						
							| 15 | 14 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑧 ( 〈 𝑥 ,  𝑧 〉  ∈  ( 𝐴  ∘  𝐵 )  →  〈 𝑥 ,  𝑧 〉  ∈  𝐶 )  ↔  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐵 𝑦  ∧  𝑦 𝐴 𝑧 )  →  𝑥 𝐶 𝑧 ) ) | 
						
							| 16 | 3 15 | bitri | ⊢ ( ( 𝐴  ∘  𝐵 )  ⊆  𝐶  ↔  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐵 𝑦  ∧  𝑦 𝐴 𝑧 )  →  𝑥 𝐶 𝑧 ) ) |