Metamath Proof Explorer


Theorem cotrgOLDOLD

Description: Obsolete version of cotrg as of 19-Dec-2024. (Contributed by NM, 27-Dec-1996) (Proof shortened by Andrew Salmon, 27-Aug-2011) Generalized from its special instance cotr . (Revised by Richard Penner, 24-Dec-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion cotrgOLDOLD ( ( 𝐴𝐵 ) ⊆ 𝐶 ↔ ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) )

Proof

Step Hyp Ref Expression
1 relco Rel ( 𝐴𝐵 )
2 ssrel ( Rel ( 𝐴𝐵 ) → ( ( 𝐴𝐵 ) ⊆ 𝐶 ↔ ∀ 𝑥𝑧 ( ⟨ 𝑥 , 𝑧 ⟩ ∈ ( 𝐴𝐵 ) → ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐶 ) ) )
3 1 2 ax-mp ( ( 𝐴𝐵 ) ⊆ 𝐶 ↔ ∀ 𝑥𝑧 ( ⟨ 𝑥 , 𝑧 ⟩ ∈ ( 𝐴𝐵 ) → ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐶 ) )
4 vex 𝑥 ∈ V
5 vex 𝑧 ∈ V
6 4 5 opelco ( ⟨ 𝑥 , 𝑧 ⟩ ∈ ( 𝐴𝐵 ) ↔ ∃ 𝑦 ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) )
7 df-br ( 𝑥 𝐶 𝑧 ↔ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐶 )
8 7 bicomi ( ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐶𝑥 𝐶 𝑧 )
9 6 8 imbi12i ( ( ⟨ 𝑥 , 𝑧 ⟩ ∈ ( 𝐴𝐵 ) → ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐶 ) ↔ ( ∃ 𝑦 ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) )
10 19.23v ( ∀ 𝑦 ( ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ↔ ( ∃ 𝑦 ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) )
11 9 10 bitr4i ( ( ⟨ 𝑥 , 𝑧 ⟩ ∈ ( 𝐴𝐵 ) → ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐶 ) ↔ ∀ 𝑦 ( ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) )
12 11 albii ( ∀ 𝑧 ( ⟨ 𝑥 , 𝑧 ⟩ ∈ ( 𝐴𝐵 ) → ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐶 ) ↔ ∀ 𝑧𝑦 ( ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) )
13 alcom ( ∀ 𝑧𝑦 ( ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ↔ ∀ 𝑦𝑧 ( ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) )
14 12 13 bitri ( ∀ 𝑧 ( ⟨ 𝑥 , 𝑧 ⟩ ∈ ( 𝐴𝐵 ) → ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐶 ) ↔ ∀ 𝑦𝑧 ( ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) )
15 14 albii ( ∀ 𝑥𝑧 ( ⟨ 𝑥 , 𝑧 ⟩ ∈ ( 𝐴𝐵 ) → ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐶 ) ↔ ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) )
16 3 15 bitri ( ( 𝐴𝐵 ) ⊆ 𝐶 ↔ ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) )