| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relres | ⊢ Rel  ( 𝑅  ↾  V ) | 
						
							| 2 |  | ssttrcl | ⊢ ( Rel  ( 𝑅  ↾  V )  →  ( 𝑅  ↾  V )  ⊆  t++ ( 𝑅  ↾  V ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( 𝑅  ↾  V )  ⊆  t++ ( 𝑅  ↾  V ) | 
						
							| 4 |  | coss1 | ⊢ ( ( 𝑅  ↾  V )  ⊆  t++ ( 𝑅  ↾  V )  →  ( ( 𝑅  ↾  V )  ∘  t++ ( 𝑅  ↾  V ) )  ⊆  ( t++ ( 𝑅  ↾  V )  ∘  t++ ( 𝑅  ↾  V ) ) ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ ( ( 𝑅  ↾  V )  ∘  t++ ( 𝑅  ↾  V ) )  ⊆  ( t++ ( 𝑅  ↾  V )  ∘  t++ ( 𝑅  ↾  V ) ) | 
						
							| 6 |  | ttrcltr | ⊢ ( t++ ( 𝑅  ↾  V )  ∘  t++ ( 𝑅  ↾  V ) )  ⊆  t++ ( 𝑅  ↾  V ) | 
						
							| 7 | 5 6 | sstri | ⊢ ( ( 𝑅  ↾  V )  ∘  t++ ( 𝑅  ↾  V ) )  ⊆  t++ ( 𝑅  ↾  V ) | 
						
							| 8 |  | ssv | ⊢ ran  t++ ( 𝑅  ↾  V )  ⊆  V | 
						
							| 9 |  | cores | ⊢ ( ran  t++ ( 𝑅  ↾  V )  ⊆  V  →  ( ( 𝑅  ↾  V )  ∘  t++ ( 𝑅  ↾  V ) )  =  ( 𝑅  ∘  t++ ( 𝑅  ↾  V ) ) ) | 
						
							| 10 | 8 9 | ax-mp | ⊢ ( ( 𝑅  ↾  V )  ∘  t++ ( 𝑅  ↾  V ) )  =  ( 𝑅  ∘  t++ ( 𝑅  ↾  V ) ) | 
						
							| 11 |  | ttrclresv | ⊢ t++ ( 𝑅  ↾  V )  =  t++ 𝑅 | 
						
							| 12 | 11 | coeq2i | ⊢ ( 𝑅  ∘  t++ ( 𝑅  ↾  V ) )  =  ( 𝑅  ∘  t++ 𝑅 ) | 
						
							| 13 | 10 12 | eqtri | ⊢ ( ( 𝑅  ↾  V )  ∘  t++ ( 𝑅  ↾  V ) )  =  ( 𝑅  ∘  t++ 𝑅 ) | 
						
							| 14 | 7 13 11 | 3sstr3i | ⊢ ( 𝑅  ∘  t++ 𝑅 )  ⊆  t++ 𝑅 |