| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unopf1o |
⊢ ( 𝑆 ∈ UniOp → 𝑆 : ℋ –1-1-onto→ ℋ ) |
| 2 |
|
unopf1o |
⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ –1-1-onto→ ℋ ) |
| 3 |
|
f1oco |
⊢ ( ( 𝑆 : ℋ –1-1-onto→ ℋ ∧ 𝑇 : ℋ –1-1-onto→ ℋ ) → ( 𝑆 ∘ 𝑇 ) : ℋ –1-1-onto→ ℋ ) |
| 4 |
1 2 3
|
syl2an |
⊢ ( ( 𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp ) → ( 𝑆 ∘ 𝑇 ) : ℋ –1-1-onto→ ℋ ) |
| 5 |
|
f1ofo |
⊢ ( ( 𝑆 ∘ 𝑇 ) : ℋ –1-1-onto→ ℋ → ( 𝑆 ∘ 𝑇 ) : ℋ –onto→ ℋ ) |
| 6 |
4 5
|
syl |
⊢ ( ( 𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp ) → ( 𝑆 ∘ 𝑇 ) : ℋ –onto→ ℋ ) |
| 7 |
|
f1of |
⊢ ( 𝑇 : ℋ –1-1-onto→ ℋ → 𝑇 : ℋ ⟶ ℋ ) |
| 8 |
2 7
|
syl |
⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ ⟶ ℋ ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp ) → 𝑇 : ℋ ⟶ ℋ ) |
| 10 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → 𝑥 ∈ ℋ ) |
| 11 |
|
fvco3 |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 12 |
9 10 11
|
syl2an |
⊢ ( ( ( 𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 13 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → 𝑦 ∈ ℋ ) |
| 14 |
|
fvco3 |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑦 ) = ( 𝑆 ‘ ( 𝑇 ‘ 𝑦 ) ) ) |
| 15 |
9 13 14
|
syl2an |
⊢ ( ( ( 𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑦 ) = ( 𝑆 ‘ ( 𝑇 ‘ 𝑦 ) ) ) |
| 16 |
12 15
|
oveq12d |
⊢ ( ( ( 𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ·ih ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑦 ) ) = ( ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih ( 𝑆 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 17 |
|
ffvelcdm |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 18 |
|
ffvelcdm |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
| 19 |
17 18
|
anim12dan |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) ) |
| 20 |
8 19
|
sylan |
⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) ) |
| 21 |
|
unop |
⊢ ( ( 𝑆 ∈ UniOp ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih ( 𝑆 ‘ ( 𝑇 ‘ 𝑦 ) ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
| 22 |
21
|
3expb |
⊢ ( ( 𝑆 ∈ UniOp ∧ ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) ) → ( ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih ( 𝑆 ‘ ( 𝑇 ‘ 𝑦 ) ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
| 23 |
20 22
|
sylan2 |
⊢ ( ( 𝑆 ∈ UniOp ∧ ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) ) → ( ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih ( 𝑆 ‘ ( 𝑇 ‘ 𝑦 ) ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
| 24 |
23
|
anassrs |
⊢ ( ( ( 𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih ( 𝑆 ‘ ( 𝑇 ‘ 𝑦 ) ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
| 25 |
|
unop |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 26 |
25
|
3expb |
⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 27 |
26
|
adantll |
⊢ ( ( ( 𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 28 |
16 24 27
|
3eqtrd |
⊢ ( ( ( 𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ·ih ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 29 |
28
|
ralrimivva |
⊢ ( ( 𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp ) → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ·ih ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 30 |
|
elunop |
⊢ ( ( 𝑆 ∘ 𝑇 ) ∈ UniOp ↔ ( ( 𝑆 ∘ 𝑇 ) : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ·ih ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) ) |
| 31 |
6 29 30
|
sylanbrc |
⊢ ( ( 𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp ) → ( 𝑆 ∘ 𝑇 ) ∈ UniOp ) |