| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
⊢ 𝑧 ∈ V |
| 2 |
1
|
cplem2 |
⊢ ∃ 𝑤 ∀ 𝑥 ∈ 𝑧 ( { 𝑦 ∣ 𝜑 } ≠ ∅ → ( { 𝑦 ∣ 𝜑 } ∩ 𝑤 ) ≠ ∅ ) |
| 3 |
|
abn0 |
⊢ ( { 𝑦 ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑦 𝜑 ) |
| 4 |
|
elin |
⊢ ( 𝑦 ∈ ( { 𝑦 ∣ 𝜑 } ∩ 𝑤 ) ↔ ( 𝑦 ∈ { 𝑦 ∣ 𝜑 } ∧ 𝑦 ∈ 𝑤 ) ) |
| 5 |
|
abid |
⊢ ( 𝑦 ∈ { 𝑦 ∣ 𝜑 } ↔ 𝜑 ) |
| 6 |
5
|
anbi1i |
⊢ ( ( 𝑦 ∈ { 𝑦 ∣ 𝜑 } ∧ 𝑦 ∈ 𝑤 ) ↔ ( 𝜑 ∧ 𝑦 ∈ 𝑤 ) ) |
| 7 |
|
ancom |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑤 ) ↔ ( 𝑦 ∈ 𝑤 ∧ 𝜑 ) ) |
| 8 |
4 6 7
|
3bitri |
⊢ ( 𝑦 ∈ ( { 𝑦 ∣ 𝜑 } ∩ 𝑤 ) ↔ ( 𝑦 ∈ 𝑤 ∧ 𝜑 ) ) |
| 9 |
8
|
exbii |
⊢ ( ∃ 𝑦 𝑦 ∈ ( { 𝑦 ∣ 𝜑 } ∩ 𝑤 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑤 ∧ 𝜑 ) ) |
| 10 |
|
nfab1 |
⊢ Ⅎ 𝑦 { 𝑦 ∣ 𝜑 } |
| 11 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑤 |
| 12 |
10 11
|
nfin |
⊢ Ⅎ 𝑦 ( { 𝑦 ∣ 𝜑 } ∩ 𝑤 ) |
| 13 |
12
|
n0f |
⊢ ( ( { 𝑦 ∣ 𝜑 } ∩ 𝑤 ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( { 𝑦 ∣ 𝜑 } ∩ 𝑤 ) ) |
| 14 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝑤 𝜑 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑤 ∧ 𝜑 ) ) |
| 15 |
9 13 14
|
3bitr4i |
⊢ ( ( { 𝑦 ∣ 𝜑 } ∩ 𝑤 ) ≠ ∅ ↔ ∃ 𝑦 ∈ 𝑤 𝜑 ) |
| 16 |
3 15
|
imbi12i |
⊢ ( ( { 𝑦 ∣ 𝜑 } ≠ ∅ → ( { 𝑦 ∣ 𝜑 } ∩ 𝑤 ) ≠ ∅ ) ↔ ( ∃ 𝑦 𝜑 → ∃ 𝑦 ∈ 𝑤 𝜑 ) ) |
| 17 |
16
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝑧 ( { 𝑦 ∣ 𝜑 } ≠ ∅ → ( { 𝑦 ∣ 𝜑 } ∩ 𝑤 ) ≠ ∅ ) ↔ ∀ 𝑥 ∈ 𝑧 ( ∃ 𝑦 𝜑 → ∃ 𝑦 ∈ 𝑤 𝜑 ) ) |
| 18 |
17
|
exbii |
⊢ ( ∃ 𝑤 ∀ 𝑥 ∈ 𝑧 ( { 𝑦 ∣ 𝜑 } ≠ ∅ → ( { 𝑦 ∣ 𝜑 } ∩ 𝑤 ) ≠ ∅ ) ↔ ∃ 𝑤 ∀ 𝑥 ∈ 𝑧 ( ∃ 𝑦 𝜑 → ∃ 𝑦 ∈ 𝑤 𝜑 ) ) |
| 19 |
2 18
|
mpbi |
⊢ ∃ 𝑤 ∀ 𝑥 ∈ 𝑧 ( ∃ 𝑦 𝜑 → ∃ 𝑦 ∈ 𝑤 𝜑 ) |