Metamath Proof Explorer


Theorem cp

Description: Collection Principle. This remarkable theorem scheme is in effect a very strong generalization of the Axiom of Replacement. The proof makes use of Scott's trick scottex that collapses a proper class into a set of minimum rank. The wff ph can be thought of as ph ( x , y ) . Scheme "Collection Principle" of Jech p. 72. (Contributed by NM, 17-Oct-2003)

Ref Expression
Assertion cp 𝑤𝑥𝑧 ( ∃ 𝑦 𝜑 → ∃ 𝑦𝑤 𝜑 )

Proof

Step Hyp Ref Expression
1 vex 𝑧 ∈ V
2 1 cplem2 𝑤𝑥𝑧 ( { 𝑦𝜑 } ≠ ∅ → ( { 𝑦𝜑 } ∩ 𝑤 ) ≠ ∅ )
3 abn0 ( { 𝑦𝜑 } ≠ ∅ ↔ ∃ 𝑦 𝜑 )
4 elin ( 𝑦 ∈ ( { 𝑦𝜑 } ∩ 𝑤 ) ↔ ( 𝑦 ∈ { 𝑦𝜑 } ∧ 𝑦𝑤 ) )
5 abid ( 𝑦 ∈ { 𝑦𝜑 } ↔ 𝜑 )
6 5 anbi1i ( ( 𝑦 ∈ { 𝑦𝜑 } ∧ 𝑦𝑤 ) ↔ ( 𝜑𝑦𝑤 ) )
7 ancom ( ( 𝜑𝑦𝑤 ) ↔ ( 𝑦𝑤𝜑 ) )
8 4 6 7 3bitri ( 𝑦 ∈ ( { 𝑦𝜑 } ∩ 𝑤 ) ↔ ( 𝑦𝑤𝜑 ) )
9 8 exbii ( ∃ 𝑦 𝑦 ∈ ( { 𝑦𝜑 } ∩ 𝑤 ) ↔ ∃ 𝑦 ( 𝑦𝑤𝜑 ) )
10 nfab1 𝑦 { 𝑦𝜑 }
11 nfcv 𝑦 𝑤
12 10 11 nfin 𝑦 ( { 𝑦𝜑 } ∩ 𝑤 )
13 12 n0f ( ( { 𝑦𝜑 } ∩ 𝑤 ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( { 𝑦𝜑 } ∩ 𝑤 ) )
14 df-rex ( ∃ 𝑦𝑤 𝜑 ↔ ∃ 𝑦 ( 𝑦𝑤𝜑 ) )
15 9 13 14 3bitr4i ( ( { 𝑦𝜑 } ∩ 𝑤 ) ≠ ∅ ↔ ∃ 𝑦𝑤 𝜑 )
16 3 15 imbi12i ( ( { 𝑦𝜑 } ≠ ∅ → ( { 𝑦𝜑 } ∩ 𝑤 ) ≠ ∅ ) ↔ ( ∃ 𝑦 𝜑 → ∃ 𝑦𝑤 𝜑 ) )
17 16 ralbii ( ∀ 𝑥𝑧 ( { 𝑦𝜑 } ≠ ∅ → ( { 𝑦𝜑 } ∩ 𝑤 ) ≠ ∅ ) ↔ ∀ 𝑥𝑧 ( ∃ 𝑦 𝜑 → ∃ 𝑦𝑤 𝜑 ) )
18 17 exbii ( ∃ 𝑤𝑥𝑧 ( { 𝑦𝜑 } ≠ ∅ → ( { 𝑦𝜑 } ∩ 𝑤 ) ≠ ∅ ) ↔ ∃ 𝑤𝑥𝑧 ( ∃ 𝑦 𝜑 → ∃ 𝑦𝑤 𝜑 ) )
19 2 18 mpbi 𝑤𝑥𝑧 ( ∃ 𝑦 𝜑 → ∃ 𝑦𝑤 𝜑 )