Step |
Hyp |
Ref |
Expression |
1 |
|
cphipcj.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
2 |
|
cphipcj.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
3 |
|
cphass.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
4 |
|
cphass.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
5 |
|
cphass.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
6 |
|
simp1 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝑊 ∈ ℂPreHil ) |
7 |
|
simp2r |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝐵 ∈ 𝐾 ) |
8 |
|
simp3l |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝐶 ∈ 𝑉 ) |
9 |
|
simp3r |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝐷 ∈ 𝑉 ) |
10 |
1 2 3 4 5
|
cphassr |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( 𝐶 , ( 𝐵 · 𝐷 ) ) = ( ( ∗ ‘ 𝐵 ) · ( 𝐶 , 𝐷 ) ) ) |
11 |
6 7 8 9 10
|
syl13anc |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( 𝐶 , ( 𝐵 · 𝐷 ) ) = ( ( ∗ ‘ 𝐵 ) · ( 𝐶 , 𝐷 ) ) ) |
12 |
11
|
oveq2d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( 𝐴 · ( 𝐶 , ( 𝐵 · 𝐷 ) ) ) = ( 𝐴 · ( ( ∗ ‘ 𝐵 ) · ( 𝐶 , 𝐷 ) ) ) ) |
13 |
|
simp2l |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝐴 ∈ 𝐾 ) |
14 |
|
cphlmod |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod ) |
15 |
14
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝑊 ∈ LMod ) |
16 |
2 3 5 4
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝐷 ∈ 𝑉 ) → ( 𝐵 · 𝐷 ) ∈ 𝑉 ) |
17 |
15 7 9 16
|
syl3anc |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( 𝐵 · 𝐷 ) ∈ 𝑉 ) |
18 |
1 2 3 4 5
|
cphass |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉 ∧ ( 𝐵 · 𝐷 ) ∈ 𝑉 ) ) → ( ( 𝐴 · 𝐶 ) , ( 𝐵 · 𝐷 ) ) = ( 𝐴 · ( 𝐶 , ( 𝐵 · 𝐷 ) ) ) ) |
19 |
6 13 8 17 18
|
syl13anc |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝐶 ) , ( 𝐵 · 𝐷 ) ) = ( 𝐴 · ( 𝐶 , ( 𝐵 · 𝐷 ) ) ) ) |
20 |
|
cphclm |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) |
21 |
20
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝑊 ∈ ℂMod ) |
22 |
3 4
|
clmsscn |
⊢ ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ ) |
23 |
21 22
|
syl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝐾 ⊆ ℂ ) |
24 |
23 13
|
sseldd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝐴 ∈ ℂ ) |
25 |
23 7
|
sseldd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝐵 ∈ ℂ ) |
26 |
25
|
cjcld |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ∗ ‘ 𝐵 ) ∈ ℂ ) |
27 |
2 1
|
cphipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → ( 𝐶 , 𝐷 ) ∈ ℂ ) |
28 |
27
|
3expb |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( 𝐶 , 𝐷 ) ∈ ℂ ) |
29 |
28
|
3adant2 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( 𝐶 , 𝐷 ) ∈ ℂ ) |
30 |
24 26 29
|
mulassd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐴 · ( ∗ ‘ 𝐵 ) ) · ( 𝐶 , 𝐷 ) ) = ( 𝐴 · ( ( ∗ ‘ 𝐵 ) · ( 𝐶 , 𝐷 ) ) ) ) |
31 |
12 19 30
|
3eqtr4d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝐶 ) , ( 𝐵 · 𝐷 ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐵 ) ) · ( 𝐶 , 𝐷 ) ) ) |