Metamath Proof Explorer


Theorem cph2di

Description: Distributive law for inner product. Complex version of ip2di . (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses cphipcj.h , = ( ·𝑖𝑊 )
cphipcj.v 𝑉 = ( Base ‘ 𝑊 )
cphdir.P + = ( +g𝑊 )
cph2di.1 ( 𝜑𝑊 ∈ ℂPreHil )
cph2di.2 ( 𝜑𝐴𝑉 )
cph2di.3 ( 𝜑𝐵𝑉 )
cph2di.4 ( 𝜑𝐶𝑉 )
cph2di.5 ( 𝜑𝐷𝑉 )
Assertion cph2di ( 𝜑 → ( ( 𝐴 + 𝐵 ) , ( 𝐶 + 𝐷 ) ) = ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) + ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) )

Proof

Step Hyp Ref Expression
1 cphipcj.h , = ( ·𝑖𝑊 )
2 cphipcj.v 𝑉 = ( Base ‘ 𝑊 )
3 cphdir.P + = ( +g𝑊 )
4 cph2di.1 ( 𝜑𝑊 ∈ ℂPreHil )
5 cph2di.2 ( 𝜑𝐴𝑉 )
6 cph2di.3 ( 𝜑𝐵𝑉 )
7 cph2di.4 ( 𝜑𝐶𝑉 )
8 cph2di.5 ( 𝜑𝐷𝑉 )
9 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
10 eqid ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) )
11 cphphl ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil )
12 4 11 syl ( 𝜑𝑊 ∈ PreHil )
13 9 1 2 3 10 12 5 6 7 8 ip2di ( 𝜑 → ( ( 𝐴 + 𝐵 ) , ( 𝐶 + 𝐷 ) ) = ( ( ( 𝐴 , 𝐶 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐷 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 , 𝐷 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐶 ) ) ) )
14 cphclm ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod )
15 9 clmadd ( 𝑊 ∈ ℂMod → + = ( +g ‘ ( Scalar ‘ 𝑊 ) ) )
16 4 14 15 3syl ( 𝜑 → + = ( +g ‘ ( Scalar ‘ 𝑊 ) ) )
17 16 oveqd ( 𝜑 → ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) = ( ( 𝐴 , 𝐶 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐷 ) ) )
18 16 oveqd ( 𝜑 → ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) = ( ( 𝐴 , 𝐷 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐶 ) ) )
19 16 17 18 oveq123d ( 𝜑 → ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) + ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) = ( ( ( 𝐴 , 𝐶 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐷 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 , 𝐷 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐶 ) ) ) )
20 13 19 eqtr4d ( 𝜑 → ( ( 𝐴 + 𝐵 ) , ( 𝐶 + 𝐷 ) ) = ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) + ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) )