Step |
Hyp |
Ref |
Expression |
1 |
|
cphsca.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
cphsca.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
3 |
1 2
|
cphsubrg |
⊢ ( 𝑊 ∈ ℂPreHil → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
4 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
5 |
4
|
subrgss |
⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ⊆ ℂ ) |
6 |
3 5
|
syl |
⊢ ( 𝑊 ∈ ℂPreHil → 𝐾 ⊆ ℂ ) |
7 |
6
|
sselda |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → 𝐴 ∈ ℂ ) |
8 |
|
absval |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) |
9 |
7 8
|
syl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) |
10 |
|
simpl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → 𝑊 ∈ ℂPreHil ) |
11 |
3
|
adantr |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
12 |
|
simpr |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → 𝐴 ∈ 𝐾 ) |
13 |
1 2
|
cphcjcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( ∗ ‘ 𝐴 ) ∈ 𝐾 ) |
14 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
15 |
14
|
subrgmcl |
⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐴 ∈ 𝐾 ∧ ( ∗ ‘ 𝐴 ) ∈ 𝐾 ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ 𝐾 ) |
16 |
11 12 13 15
|
syl3anc |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ 𝐾 ) |
17 |
7
|
cjmulrcld |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ) |
18 |
7
|
cjmulge0d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
19 |
1 2
|
cphsqrtcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ 𝐾 ∧ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) → ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ∈ 𝐾 ) |
20 |
10 16 17 18 19
|
syl13anc |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ∈ 𝐾 ) |
21 |
9 20
|
eqeltrd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( abs ‘ 𝐴 ) ∈ 𝐾 ) |