Metamath Proof Explorer


Theorem cphabscl

Description: The scalar field of a subcomplex pre-Hilbert space is closed under the absolute value operation. (Contributed by Mario Carneiro, 11-Oct-2015)

Ref Expression
Hypotheses cphsca.f 𝐹 = ( Scalar ‘ 𝑊 )
cphsca.k 𝐾 = ( Base ‘ 𝐹 )
Assertion cphabscl ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ) → ( abs ‘ 𝐴 ) ∈ 𝐾 )

Proof

Step Hyp Ref Expression
1 cphsca.f 𝐹 = ( Scalar ‘ 𝑊 )
2 cphsca.k 𝐾 = ( Base ‘ 𝐹 )
3 1 2 cphsubrg ( 𝑊 ∈ ℂPreHil → 𝐾 ∈ ( SubRing ‘ ℂfld ) )
4 cnfldbas ℂ = ( Base ‘ ℂfld )
5 4 subrgss ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ⊆ ℂ )
6 3 5 syl ( 𝑊 ∈ ℂPreHil → 𝐾 ⊆ ℂ )
7 6 sselda ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ) → 𝐴 ∈ ℂ )
8 absval ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) )
9 7 8 syl ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ) → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) )
10 simpl ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ) → 𝑊 ∈ ℂPreHil )
11 3 adantr ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ) → 𝐾 ∈ ( SubRing ‘ ℂfld ) )
12 simpr ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ) → 𝐴𝐾 )
13 1 2 cphcjcl ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ) → ( ∗ ‘ 𝐴 ) ∈ 𝐾 )
14 cnfldmul · = ( .r ‘ ℂfld )
15 14 subrgmcl ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐴𝐾 ∧ ( ∗ ‘ 𝐴 ) ∈ 𝐾 ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ 𝐾 )
16 11 12 13 15 syl3anc ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ 𝐾 )
17 7 cjmulrcld ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ )
18 7 cjmulge0d ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ) → 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) )
19 1 2 cphsqrtcl ( ( 𝑊 ∈ ℂPreHil ∧ ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ 𝐾 ∧ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) → ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ∈ 𝐾 )
20 10 16 17 18 19 syl13anc ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ) → ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ∈ 𝐾 )
21 9 20 eqeltrd ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ) → ( abs ‘ 𝐴 ) ∈ 𝐾 )