| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphsca.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 2 |  | cphsca.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 3 | 1 2 | cphsubrg | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝐾  ∈  ( SubRing ‘ ℂfld ) ) | 
						
							| 4 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 5 | 4 | subrgss | ⊢ ( 𝐾  ∈  ( SubRing ‘ ℂfld )  →  𝐾  ⊆  ℂ ) | 
						
							| 6 | 3 5 | syl | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝐾  ⊆  ℂ ) | 
						
							| 7 | 6 | sselda | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾 )  →  𝐴  ∈  ℂ ) | 
						
							| 8 |  | absval | ⊢ ( 𝐴  ∈  ℂ  →  ( abs ‘ 𝐴 )  =  ( √ ‘ ( 𝐴  ·  ( ∗ ‘ 𝐴 ) ) ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾 )  →  ( abs ‘ 𝐴 )  =  ( √ ‘ ( 𝐴  ·  ( ∗ ‘ 𝐴 ) ) ) ) | 
						
							| 10 |  | simpl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾 )  →  𝑊  ∈  ℂPreHil ) | 
						
							| 11 | 3 | adantr | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾 )  →  𝐾  ∈  ( SubRing ‘ ℂfld ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾 )  →  𝐴  ∈  𝐾 ) | 
						
							| 13 | 1 2 | cphcjcl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾 )  →  ( ∗ ‘ 𝐴 )  ∈  𝐾 ) | 
						
							| 14 |  | cnfldmul | ⊢  ·   =  ( .r ‘ ℂfld ) | 
						
							| 15 | 14 | subrgmcl | ⊢ ( ( 𝐾  ∈  ( SubRing ‘ ℂfld )  ∧  𝐴  ∈  𝐾  ∧  ( ∗ ‘ 𝐴 )  ∈  𝐾 )  →  ( 𝐴  ·  ( ∗ ‘ 𝐴 ) )  ∈  𝐾 ) | 
						
							| 16 | 11 12 13 15 | syl3anc | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾 )  →  ( 𝐴  ·  ( ∗ ‘ 𝐴 ) )  ∈  𝐾 ) | 
						
							| 17 | 7 | cjmulrcld | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾 )  →  ( 𝐴  ·  ( ∗ ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 18 | 7 | cjmulge0d | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾 )  →  0  ≤  ( 𝐴  ·  ( ∗ ‘ 𝐴 ) ) ) | 
						
							| 19 | 1 2 | cphsqrtcl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  ( ( 𝐴  ·  ( ∗ ‘ 𝐴 ) )  ∈  𝐾  ∧  ( 𝐴  ·  ( ∗ ‘ 𝐴 ) )  ∈  ℝ  ∧  0  ≤  ( 𝐴  ·  ( ∗ ‘ 𝐴 ) ) ) )  →  ( √ ‘ ( 𝐴  ·  ( ∗ ‘ 𝐴 ) ) )  ∈  𝐾 ) | 
						
							| 20 | 10 16 17 18 19 | syl13anc | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾 )  →  ( √ ‘ ( 𝐴  ·  ( ∗ ‘ 𝐴 ) ) )  ∈  𝐾 ) | 
						
							| 21 | 9 20 | eqeltrd | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾 )  →  ( abs ‘ 𝐴 )  ∈  𝐾 ) |