Step |
Hyp |
Ref |
Expression |
1 |
|
cphipcj.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
2 |
|
cphipcj.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
3 |
|
cphass.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
4 |
|
cphass.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
5 |
|
cphass.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
6 |
|
cphphl |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) |
7 |
|
eqid |
⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) |
8 |
3 1 2 4 5 7
|
ipass |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝐵 ) , 𝐶 ) = ( 𝐴 ( .r ‘ 𝐹 ) ( 𝐵 , 𝐶 ) ) ) |
9 |
6 8
|
sylan |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝐵 ) , 𝐶 ) = ( 𝐴 ( .r ‘ 𝐹 ) ( 𝐵 , 𝐶 ) ) ) |
10 |
|
cphclm |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) |
11 |
3
|
clmmul |
⊢ ( 𝑊 ∈ ℂMod → · = ( .r ‘ 𝐹 ) ) |
12 |
10 11
|
syl |
⊢ ( 𝑊 ∈ ℂPreHil → · = ( .r ‘ 𝐹 ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → · = ( .r ‘ 𝐹 ) ) |
14 |
13
|
oveqd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 · ( 𝐵 , 𝐶 ) ) = ( 𝐴 ( .r ‘ 𝐹 ) ( 𝐵 , 𝐶 ) ) ) |
15 |
9 14
|
eqtr4d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝐵 ) , 𝐶 ) = ( 𝐴 · ( 𝐵 , 𝐶 ) ) ) |