Metamath Proof Explorer


Theorem cphass

Description: Associative law for inner product. Equation I2 of Ponnusamy p. 363. See ipass , his5 . (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses cphipcj.h , = ( ·𝑖𝑊 )
cphipcj.v 𝑉 = ( Base ‘ 𝑊 )
cphass.f 𝐹 = ( Scalar ‘ 𝑊 )
cphass.k 𝐾 = ( Base ‘ 𝐹 )
cphass.s · = ( ·𝑠𝑊 )
Assertion cphass ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴𝐾𝐵𝑉𝐶𝑉 ) ) → ( ( 𝐴 · 𝐵 ) , 𝐶 ) = ( 𝐴 · ( 𝐵 , 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 cphipcj.h , = ( ·𝑖𝑊 )
2 cphipcj.v 𝑉 = ( Base ‘ 𝑊 )
3 cphass.f 𝐹 = ( Scalar ‘ 𝑊 )
4 cphass.k 𝐾 = ( Base ‘ 𝐹 )
5 cphass.s · = ( ·𝑠𝑊 )
6 cphphl ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil )
7 eqid ( .r𝐹 ) = ( .r𝐹 )
8 3 1 2 4 5 7 ipass ( ( 𝑊 ∈ PreHil ∧ ( 𝐴𝐾𝐵𝑉𝐶𝑉 ) ) → ( ( 𝐴 · 𝐵 ) , 𝐶 ) = ( 𝐴 ( .r𝐹 ) ( 𝐵 , 𝐶 ) ) )
9 6 8 sylan ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴𝐾𝐵𝑉𝐶𝑉 ) ) → ( ( 𝐴 · 𝐵 ) , 𝐶 ) = ( 𝐴 ( .r𝐹 ) ( 𝐵 , 𝐶 ) ) )
10 cphclm ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod )
11 3 clmmul ( 𝑊 ∈ ℂMod → · = ( .r𝐹 ) )
12 10 11 syl ( 𝑊 ∈ ℂPreHil → · = ( .r𝐹 ) )
13 12 adantr ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴𝐾𝐵𝑉𝐶𝑉 ) ) → · = ( .r𝐹 ) )
14 13 oveqd ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴𝐾𝐵𝑉𝐶𝑉 ) ) → ( 𝐴 · ( 𝐵 , 𝐶 ) ) = ( 𝐴 ( .r𝐹 ) ( 𝐵 , 𝐶 ) ) )
15 9 14 eqtr4d ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴𝐾𝐵𝑉𝐶𝑉 ) ) → ( ( 𝐴 · 𝐵 ) , 𝐶 ) = ( 𝐴 · ( 𝐵 , 𝐶 ) ) )