Metamath Proof Explorer


Theorem cphassi

Description: Associative law for the first argument of an inner product with scalar _ i . (Contributed by AV, 17-Oct-2021)

Ref Expression
Hypotheses cphassi.x 𝑋 = ( Base ‘ 𝑊 )
cphassi.s · = ( ·𝑠𝑊 )
cphassi.i , = ( ·𝑖𝑊 )
cphassi.f 𝐹 = ( Scalar ‘ 𝑊 )
cphassi.k 𝐾 = ( Base ‘ 𝐹 )
Assertion cphassi ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴𝑋𝐵𝑋 ) → ( ( i · 𝐵 ) , 𝐴 ) = ( i · ( 𝐵 , 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 cphassi.x 𝑋 = ( Base ‘ 𝑊 )
2 cphassi.s · = ( ·𝑠𝑊 )
3 cphassi.i , = ( ·𝑖𝑊 )
4 cphassi.f 𝐹 = ( Scalar ‘ 𝑊 )
5 cphassi.k 𝐾 = ( Base ‘ 𝐹 )
6 simp1l ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴𝑋𝐵𝑋 ) → 𝑊 ∈ ℂPreHil )
7 simp1r ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴𝑋𝐵𝑋 ) → i ∈ 𝐾 )
8 simp3 ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴𝑋𝐵𝑋 ) → 𝐵𝑋 )
9 simp2 ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴𝑋𝐵𝑋 ) → 𝐴𝑋 )
10 3 1 4 5 2 cphass ( ( 𝑊 ∈ ℂPreHil ∧ ( i ∈ 𝐾𝐵𝑋𝐴𝑋 ) ) → ( ( i · 𝐵 ) , 𝐴 ) = ( i · ( 𝐵 , 𝐴 ) ) )
11 6 7 8 9 10 syl13anc ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴𝑋𝐵𝑋 ) → ( ( i · 𝐵 ) , 𝐴 ) = ( i · ( 𝐵 , 𝐴 ) ) )