Step |
Hyp |
Ref |
Expression |
1 |
|
cphassi.x |
⊢ 𝑋 = ( Base ‘ 𝑊 ) |
2 |
|
cphassi.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
3 |
|
cphassi.i |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
4 |
|
cphassi.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
5 |
|
cphassi.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
6 |
|
simp1l |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝑊 ∈ ℂPreHil ) |
7 |
|
simp1r |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → i ∈ 𝐾 ) |
8 |
|
simp2 |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
9 |
|
simp3 |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) |
10 |
3 1 4 5 2
|
cphassr |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( i ∈ 𝐾 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 , ( i · 𝐵 ) ) = ( ( ∗ ‘ i ) · ( 𝐴 , 𝐵 ) ) ) |
11 |
6 7 8 9 10
|
syl13anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 , ( i · 𝐵 ) ) = ( ( ∗ ‘ i ) · ( 𝐴 , 𝐵 ) ) ) |
12 |
|
cji |
⊢ ( ∗ ‘ i ) = - i |
13 |
12
|
oveq1i |
⊢ ( ( ∗ ‘ i ) · ( 𝐴 , 𝐵 ) ) = ( - i · ( 𝐴 , 𝐵 ) ) |
14 |
11 13
|
eqtrdi |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 , ( i · 𝐵 ) ) = ( - i · ( 𝐴 , 𝐵 ) ) ) |