Metamath Proof Explorer


Theorem cphassir

Description: "Associative" law for the second argument of an inner product with scalar _ i . (Contributed by AV, 17-Oct-2021)

Ref Expression
Hypotheses cphassi.x 𝑋 = ( Base ‘ 𝑊 )
cphassi.s · = ( ·𝑠𝑊 )
cphassi.i , = ( ·𝑖𝑊 )
cphassi.f 𝐹 = ( Scalar ‘ 𝑊 )
cphassi.k 𝐾 = ( Base ‘ 𝐹 )
Assertion cphassir ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 , ( i · 𝐵 ) ) = ( - i · ( 𝐴 , 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 cphassi.x 𝑋 = ( Base ‘ 𝑊 )
2 cphassi.s · = ( ·𝑠𝑊 )
3 cphassi.i , = ( ·𝑖𝑊 )
4 cphassi.f 𝐹 = ( Scalar ‘ 𝑊 )
5 cphassi.k 𝐾 = ( Base ‘ 𝐹 )
6 simp1l ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴𝑋𝐵𝑋 ) → 𝑊 ∈ ℂPreHil )
7 simp1r ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴𝑋𝐵𝑋 ) → i ∈ 𝐾 )
8 simp2 ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴𝑋𝐵𝑋 ) → 𝐴𝑋 )
9 simp3 ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴𝑋𝐵𝑋 ) → 𝐵𝑋 )
10 3 1 4 5 2 cphassr ( ( 𝑊 ∈ ℂPreHil ∧ ( i ∈ 𝐾𝐴𝑋𝐵𝑋 ) ) → ( 𝐴 , ( i · 𝐵 ) ) = ( ( ∗ ‘ i ) · ( 𝐴 , 𝐵 ) ) )
11 6 7 8 9 10 syl13anc ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 , ( i · 𝐵 ) ) = ( ( ∗ ‘ i ) · ( 𝐴 , 𝐵 ) ) )
12 cji ( ∗ ‘ i ) = - i
13 12 oveq1i ( ( ∗ ‘ i ) · ( 𝐴 , 𝐵 ) ) = ( - i · ( 𝐴 , 𝐵 ) )
14 11 13 eqtrdi ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 , ( i · 𝐵 ) ) = ( - i · ( 𝐴 , 𝐵 ) ) )