Step |
Hyp |
Ref |
Expression |
1 |
|
cphipcj.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
2 |
|
cphipcj.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
3 |
|
cphass.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
4 |
|
cphass.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
5 |
|
cphass.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
6 |
|
cphclm |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) |
7 |
6
|
adantr |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝑊 ∈ ℂMod ) |
8 |
3
|
clmmul |
⊢ ( 𝑊 ∈ ℂMod → · = ( .r ‘ 𝐹 ) ) |
9 |
7 8
|
syl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → · = ( .r ‘ 𝐹 ) ) |
10 |
|
eqidd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐵 , 𝐶 ) = ( 𝐵 , 𝐶 ) ) |
11 |
3
|
clmcj |
⊢ ( 𝑊 ∈ ℂMod → ∗ = ( *𝑟 ‘ 𝐹 ) ) |
12 |
7 11
|
syl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ∗ = ( *𝑟 ‘ 𝐹 ) ) |
13 |
12
|
fveq1d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ∗ ‘ 𝐴 ) = ( ( *𝑟 ‘ 𝐹 ) ‘ 𝐴 ) ) |
14 |
9 10 13
|
oveq123d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐵 , 𝐶 ) · ( ∗ ‘ 𝐴 ) ) = ( ( 𝐵 , 𝐶 ) ( .r ‘ 𝐹 ) ( ( *𝑟 ‘ 𝐹 ) ‘ 𝐴 ) ) ) |
15 |
3 4
|
clmsscn |
⊢ ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ ) |
16 |
7 15
|
syl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐾 ⊆ ℂ ) |
17 |
|
simpr1 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐴 ∈ 𝐾 ) |
18 |
16 17
|
sseldd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐴 ∈ ℂ ) |
19 |
18
|
cjcld |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
20 |
2 1
|
cphipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐵 , 𝐶 ) ∈ ℂ ) |
21 |
20
|
3adant3r1 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐵 , 𝐶 ) ∈ ℂ ) |
22 |
19 21
|
mulcomd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( ∗ ‘ 𝐴 ) · ( 𝐵 , 𝐶 ) ) = ( ( 𝐵 , 𝐶 ) · ( ∗ ‘ 𝐴 ) ) ) |
23 |
|
cphphl |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) |
24 |
|
3anrot |
⊢ ( ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ↔ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝐾 ) ) |
25 |
24
|
biimpi |
⊢ ( ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝐾 ) ) |
26 |
|
eqid |
⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) |
27 |
|
eqid |
⊢ ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ 𝐹 ) |
28 |
3 1 2 4 5 26 27
|
ipassr |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝐾 ) ) → ( 𝐵 , ( 𝐴 · 𝐶 ) ) = ( ( 𝐵 , 𝐶 ) ( .r ‘ 𝐹 ) ( ( *𝑟 ‘ 𝐹 ) ‘ 𝐴 ) ) ) |
29 |
23 25 28
|
syl2an |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐵 , ( 𝐴 · 𝐶 ) ) = ( ( 𝐵 , 𝐶 ) ( .r ‘ 𝐹 ) ( ( *𝑟 ‘ 𝐹 ) ‘ 𝐴 ) ) ) |
30 |
14 22 29
|
3eqtr4rd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐵 , ( 𝐴 · 𝐶 ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝐵 , 𝐶 ) ) ) |