Step |
Hyp |
Ref |
Expression |
1 |
|
cphsca.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
cphsca.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
3 |
1 2
|
cphsca |
⊢ ( 𝑊 ∈ ℂPreHil → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
4 |
3
|
fveq2d |
⊢ ( 𝑊 ∈ ℂPreHil → ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ ( ℂfld ↾s 𝐾 ) ) ) |
5 |
2
|
fvexi |
⊢ 𝐾 ∈ V |
6 |
|
eqid |
⊢ ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s 𝐾 ) |
7 |
|
cnfldcj |
⊢ ∗ = ( *𝑟 ‘ ℂfld ) |
8 |
6 7
|
ressstarv |
⊢ ( 𝐾 ∈ V → ∗ = ( *𝑟 ‘ ( ℂfld ↾s 𝐾 ) ) ) |
9 |
5 8
|
ax-mp |
⊢ ∗ = ( *𝑟 ‘ ( ℂfld ↾s 𝐾 ) ) |
10 |
4 9
|
eqtr4di |
⊢ ( 𝑊 ∈ ℂPreHil → ( *𝑟 ‘ 𝐹 ) = ∗ ) |
11 |
10
|
adantr |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( *𝑟 ‘ 𝐹 ) = ∗ ) |
12 |
11
|
fveq1d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ 𝐴 ) = ( ∗ ‘ 𝐴 ) ) |
13 |
|
cphphl |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) |
14 |
1
|
phlsrng |
⊢ ( 𝑊 ∈ PreHil → 𝐹 ∈ *-Ring ) |
15 |
13 14
|
syl |
⊢ ( 𝑊 ∈ ℂPreHil → 𝐹 ∈ *-Ring ) |
16 |
|
eqid |
⊢ ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ 𝐹 ) |
17 |
16 2
|
srngcl |
⊢ ( ( 𝐹 ∈ *-Ring ∧ 𝐴 ∈ 𝐾 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ) |
18 |
15 17
|
sylan |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ) |
19 |
12 18
|
eqeltrrd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( ∗ ‘ 𝐴 ) ∈ 𝐾 ) |