Step |
Hyp |
Ref |
Expression |
1 |
|
cphipcj.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
2 |
|
cphipcj.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
3 |
|
cphdir.P |
⊢ + = ( +g ‘ 𝑊 ) |
4 |
|
cphphl |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) |
5 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) |
7 |
5 1 2 3 6
|
ipdir |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 + 𝐵 ) , 𝐶 ) = ( ( 𝐴 , 𝐶 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐶 ) ) ) |
8 |
4 7
|
sylan |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 + 𝐵 ) , 𝐶 ) = ( ( 𝐴 , 𝐶 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐶 ) ) ) |
9 |
|
cphclm |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) |
10 |
5
|
clmadd |
⊢ ( 𝑊 ∈ ℂMod → + = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
11 |
9 10
|
syl |
⊢ ( 𝑊 ∈ ℂPreHil → + = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → + = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
13 |
12
|
oveqd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐶 ) ) = ( ( 𝐴 , 𝐶 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐶 ) ) ) |
14 |
8 13
|
eqtr4d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 + 𝐵 ) , 𝐶 ) = ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐶 ) ) ) |