Metamath Proof Explorer


Theorem cphip0l

Description: Inner product with a zero first argument. Part of proof of Theorem 6.44 of Ponnusamy p. 361. Complex version of ip0l . (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses cphipcj.h , = ( ·𝑖𝑊 )
cphipcj.v 𝑉 = ( Base ‘ 𝑊 )
cphip0l.z 0 = ( 0g𝑊 )
Assertion cphip0l ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉 ) → ( 0 , 𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 cphipcj.h , = ( ·𝑖𝑊 )
2 cphipcj.v 𝑉 = ( Base ‘ 𝑊 )
3 cphip0l.z 0 = ( 0g𝑊 )
4 cphphl ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil )
5 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
6 eqid ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) )
7 5 1 2 6 3 ip0l ( ( 𝑊 ∈ PreHil ∧ 𝐴𝑉 ) → ( 0 , 𝐴 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )
8 4 7 sylan ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉 ) → ( 0 , 𝐴 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )
9 cphclm ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod )
10 5 clm0 ( 𝑊 ∈ ℂMod → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )
11 9 10 syl ( 𝑊 ∈ ℂPreHil → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )
12 11 adantr ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉 ) → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )
13 8 12 eqtr4d ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉 ) → ( 0 , 𝐴 ) = 0 )